File: pzgeqpf.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (576 lines) | stat: -rw-r--r-- 22,119 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
      SUBROUTINE PZGEQPF( M, N, A, IA, JA, DESCA, IPIV, TAU, WORK,
     $                     LWORK, RWORK, LRWORK, INFO )
*
*  -- ScaLAPACK routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 20, 2019
*
*     .. Scalar Arguments ..
      INTEGER            IA, JA, INFO, LRWORK, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PZGEQPF computes a QR factorization with column pivoting of a
*  M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1):
*
*                         sub( A ) * P = Q * R.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, the local pieces of the M-by-N distributed matrix
*          sub( A ) which is to be factored. On exit, the elements on
*          and above the diagonal of sub( A ) contain the min(M,N) by N
*          upper trapezoidal matrix R (R is upper triangular if M >= N);
*          the elements below the diagonal, with the array TAU, repre-
*          sent the unitary matrix Q as a product of elementary
*          reflectors (see Further Details).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local output) INTEGER array, dimension LOCc(JA+N-1).
*          On exit, if IPIV(I) = K, the local i-th column of sub( A )*P
*          was the global K-th column of sub( A ). IPIV is tied to the
*          distributed matrix A.
*
*  TAU     (local output) COMPLEX*16, array, dimension
*          LOCc(JA+MIN(M,N)-1). This array contains the scalar factors
*          TAU of the elementary reflectors. TAU is tied to the
*          distributed matrix A.
*
*  WORK    (local workspace/local output) COMPLEX*16 array,
*                                                    dimension (LWORK)
*          On exit, WORK(1) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK >= MAX(3,Mp0 + Nq0).
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  RWORK   (local workspace/local output) DOUBLE PRECISION array,
*                                                 dimension (LRWORK)
*          On exit, RWORK(1) returns the minimal and optimal LRWORK.
*
*  LRWORK  (local or global input) INTEGER
*          The dimension of the array RWORK.
*          LRWORK is local input and must be at least
*          LRWORK >= LOCc(JA+N-1)+Nq0.
*
*          IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Mp0   = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ),
*          Nq0   = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ),
*          LOCc(JA+N-1) = NUMROC( JA+N-1, NB_A, MYCOL, CSRC_A, NPCOL )
*
*          and NUMROC, INDXG2P are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*          If LRWORK = -1, then LRWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(n)
*
*  Each H(i) has the form
*
*     H = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
*  A(ia+i-1:ia+m-1,ja+i-1).
*
*  The matrix P is represented in jpvt as follows: If
*     jpvt(j) = i
*  then the jth column of P is the ith canonical unit vector.
*
*  References
*  ==========
*  
*  For modifications introduced in Scalapack 2.1
*  LAWN 295 
*  New robust ScaLAPACK routine for computing the QR factorization with column pivoting
*  Zvonimir Bujanovic, Zlatko Drmac
*  http://www.netlib.org/lapack/lawnspdf/lawn295.pdf
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IACOL, IAROW, ICOFF, ICTXT, ICURROW,
     $                   ICURCOL, II, IIA, IOFFA, IPCOL, IROFF, ITEMP,
     $                   J, JB, JJ, JJA, JJPVT, JN, KB, K, KK, KSTART,
     $                   KSTEP, LDA, LL, LRWMIN, LWMIN, MN, MP, MYCOL,
     $                   MYROW, NPCOL, NPROW, NQ, NQ0, PVT
      DOUBLE PRECISION   TEMP, TEMP2, TOL3Z
      COMPLEX*16         AJJ, ALPHA
*     ..
*     .. Local Arrays ..
      INTEGER            DESCN( DLEN_ ), IDUM1( 2 ), IDUM2( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCSET, IGERV2D,
     $                   IGESD2D, INFOG1L, INFOG2L, PCHK1MAT, PDAMAX,
     $                   PDZNRM2, PXERBLA, PZELSET,
     $                   PZLARFC, PZLARFG, ZCOPY, ZGEBR2D,
     $                   ZGEBS2D, ZGERV2D, ZGESD2D, ZLARFG,
     $                   ZSWAP
*     ..
*     .. External Functions ..
      INTEGER            ICEIL, INDXG2P, NUMROC
      EXTERNAL           ICEIL, INDXG2P, NUMROC
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DCMPLX, DCONJG, IDINT, MAX, MIN, MOD, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(600+CTXT_)
      ELSE
         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
         IF( INFO.EQ.0 ) THEN
            IROFF = MOD( IA-1, DESCA( MB_ ) )
            ICOFF = MOD( JA-1, DESCA( NB_ ) )
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $                       NPCOL )
            MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
            NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
            NQ0 = NUMROC( JA+N-1, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $                    NPCOL )
            LWMIN = MAX( 3, MP + NQ )
            LRWMIN = NQ0 + NQ
*
            WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
            RWORK( 1 ) = DBLE( LRWMIN )
            LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
            IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -10
            ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -12
            END IF
         END IF
         IF( LWORK.EQ.-1 ) THEN
            IDUM1( 1 ) = -1
         ELSE
            IDUM1( 1 ) = 1
         END IF
         IDUM2( 1 ) = 10
         IF( LRWORK.EQ.-1 ) THEN
            IDUM1( 2 ) = -1
         ELSE
            IDUM1( 2 ) = 1
         END IF
         IDUM2( 2 ) = 12
         CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, 2, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PZGEQPF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      IF( MYROW.EQ.IAROW )
     $   MP = MP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
      MN = MIN( M, N )
      TOL3Z = SQRT( DLAMCH('Epsilon') )
*
*     Initialize the array of pivots
*
      LDA = DESCA( LLD_ )
      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
      KSTEP  = NPCOL * DESCA( NB_ )
*
      IF( MYCOL.EQ.IACOL ) THEN
*
*        Handle first block separately
*
         JB = JN - JA + 1
         DO 10 LL = JJA, JJA+JB-1
            IPIV( LL ) = JA + LL - JJA
   10    CONTINUE
         KSTART = JN + KSTEP - DESCA( NB_ )
*
*        Loop over remaining block of columns
*
         DO 30 KK = JJA+JB, JJA+NQ-1, DESCA( NB_ )
            KB = MIN( JJA+NQ-KK, DESCA( NB_ ) )
            DO 20 LL = KK, KK+KB-1
               IPIV( LL ) = KSTART+LL-KK+1
   20       CONTINUE
            KSTART = KSTART + KSTEP
   30    CONTINUE
      ELSE
         KSTART = JN + ( MOD( MYCOL-IACOL+NPCOL, NPCOL )-1 )*
     $                        DESCA( NB_ )
         DO 50 KK = JJA, JJA+NQ-1, DESCA( NB_ )
            KB = MIN( JJA+NQ-KK, DESCA( NB_ ) )
            DO 40 LL = KK, KK+KB-1
               IPIV( LL ) = KSTART+LL-KK+1
   40       CONTINUE
            KSTART = KSTART + KSTEP
   50    CONTINUE
      END IF
*
*     Initialize partial column norms, handle first block separately
*
      CALL DESCSET( DESCN, 1, DESCA( N_ ), 1, DESCA( NB_ ), MYROW,
     $              DESCA( CSRC_ ), ICTXT, 1 )
*
      JJ = JJA
      IF( MYCOL.EQ.IACOL ) THEN
         DO 60 KK = 0, JB-1
            CALL PDZNRM2( M, RWORK( JJ+KK ), A, IA, JA+KK, DESCA, 1 )
            RWORK( NQ+JJ+KK ) = RWORK( JJ+KK )
   60    CONTINUE
         JJ = JJ + JB
      END IF
      ICURCOL = MOD( IACOL+1, NPCOL )
*
*     Loop over the remaining blocks of columns
*
      DO 80 J = JN+1, JA+N-1, DESCA( NB_ )
         JB = MIN( JA+N-J, DESCA( NB_ ) )
*
         IF( MYCOL.EQ.ICURCOL ) THEN
            DO 70 KK = 0, JB-1
               CALL PDZNRM2( M, RWORK( JJ+KK ), A, IA, J+KK, DESCA, 1 )
               RWORK( NQ+JJ+KK ) = RWORK( JJ+KK )
   70       CONTINUE
            JJ = JJ + JB
         END IF
         ICURCOL = MOD( ICURCOL+1, NPCOL )
   80 CONTINUE
*
*     Compute factorization
*
      DO 120 J = JA, JA+MN-1
         I = IA + J - JA
*
         CALL INFOG1L( J, DESCA( NB_ ), NPCOL, MYCOL, DESCA( CSRC_ ),
     $                 JJ, ICURCOL )
         K = JA + N - J
         IF( K.GT.1 ) THEN
            CALL PDAMAX( K, TEMP, PVT, RWORK, 1, J, DESCN,
     $                   DESCN( M_ ) )
         ELSE
            PVT = J
         END IF
         IF( J.NE.PVT ) THEN
            CALL INFOG1L( PVT, DESCA( NB_ ), NPCOL, MYCOL,
     $                    DESCA( CSRC_ ), JJPVT, IPCOL )
            IF( ICURCOL.EQ.IPCOL ) THEN
               IF( MYCOL.EQ.ICURCOL ) THEN
                  CALL ZSWAP( MP, A( IIA+(JJ-1)*LDA ), 1,
     $                        A( IIA+(JJPVT-1)*LDA ), 1 )
                  ITEMP = IPIV( JJPVT )
                  IPIV( JJPVT ) = IPIV( JJ )
                  IPIV( JJ ) = ITEMP
                  RWORK( JJPVT ) = RWORK( JJ )
                  RWORK( NQ+JJPVT ) = RWORK( NQ+JJ )
               END IF
            ELSE
               IF( MYCOL.EQ.ICURCOL ) THEN
*
                  CALL ZGESD2D( ICTXT, MP, 1, A( IIA+(JJ-1)*LDA ), LDA,
     $                          MYROW, IPCOL )
                  WORK( 1 ) = DCMPLX( DBLE( IPIV( JJ ) ) )
                  WORK( 2 ) = DCMPLX( RWORK( JJ ) )
                  WORK( 3 ) = DCMPLX( RWORK( JJ + NQ ) )
                  CALL ZGESD2D( ICTXT, 3, 1, WORK, 3, MYROW, IPCOL )
*
                  CALL ZGERV2D( ICTXT, MP, 1, A( IIA+(JJ-1)*LDA ), LDA,
     $                          MYROW, IPCOL )
                  CALL IGERV2D( ICTXT, 1, 1, IPIV( JJ ), 1, MYROW,
     $                          IPCOL )
*
               ELSE IF( MYCOL.EQ.IPCOL ) THEN
*
                  CALL ZGESD2D( ICTXT, MP, 1, A( IIA+(JJPVT-1)*LDA ),
     $                          LDA, MYROW, ICURCOL )
                  CALL IGESD2D( ICTXT, 1, 1, IPIV( JJPVT ), 1, MYROW,
     $                          ICURCOL )
*
                  CALL ZGERV2D( ICTXT, MP, 1, A( IIA+(JJPVT-1)*LDA ),
     $                          LDA, MYROW, ICURCOL )
                  CALL ZGERV2D( ICTXT, 3, 1, WORK, 3, MYROW, ICURCOL )
                  IPIV( JJPVT ) = IDINT( DBLE( WORK( 1 ) ) )
                  RWORK( JJPVT ) = DBLE( WORK( 2 ) )
                  RWORK( JJPVT+NQ ) = DBLE( WORK( 3 ) )
*
               END IF
*
            END IF
*
         END IF
*
*        Generate elementary reflector H(i)
*
         CALL INFOG1L( I, DESCA( MB_ ), NPROW, MYROW, DESCA( RSRC_ ),
     $                 II, ICURROW )
         IF( DESCA( M_ ).EQ.1 ) THEN
            IF( MYROW.EQ.ICURROW ) THEN
               IF( MYCOL.EQ.ICURCOL ) THEN
                  IOFFA = II+(JJ-1)*DESCA( LLD_ )
                  AJJ = A( IOFFA )
                  CALL ZLARFG( 1, AJJ, A( IOFFA ), 1, TAU( JJ ) )
                  IF( N.GT.1 ) THEN
                     ALPHA = CMPLX( ONE ) - DCONJG( TAU( JJ ) )
                     CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', 1, 1, ALPHA,
     $                                  1 )
                     CALL ZSCAL( NQ-JJ, ALPHA, A( IOFFA+DESCA( LLD_ ) ),
     $                           DESCA( LLD_ ) )
                  END IF
                  CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1,
     $                          TAU( JJ ), 1 )
                  A( IOFFA ) = AJJ
               ELSE
                  IF( N.GT.1 ) THEN
                     CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', 1, 1, ALPHA,
     $                             1, ICURROW, ICURCOL )
                     CALL ZSCAL( NQ-JJ+1, ALPHA, A( I ), DESCA( LLD_ ) )
                  END IF
               END IF
            ELSE IF( MYCOL.EQ.ICURCOL ) THEN
               CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, TAU( JJ ),
     $                       1, ICURROW, ICURCOL )
            END IF
*
         ELSE
*
            CALL PZLARFG( M-J+JA, AJJ, I, J, A, MIN( I+1, IA+M-1 ), J,
     $                    DESCA, 1, TAU )
            IF( J.LT.JA+N-1 ) THEN
*
*              Apply H(i) to A(ia+j-ja:ia+m-1,j+1:ja+n-1) from the left
*
               CALL PZELSET( A, I, J, DESCA, DCMPLX( ONE ) )
               CALL PZLARFC( 'Left', M-J+JA, JA+N-1-J, A, I, J, DESCA,
     $                       1, TAU, A, I, J+1, DESCA, WORK )
            END IF
            CALL PZELSET( A, I, J, DESCA, AJJ )
*
         END IF
*
*        Update partial columns norms
*
         IF( MYCOL.EQ.ICURCOL )
     $      JJ = JJ + 1
         IF( MOD( J, DESCA( NB_ ) ).EQ.0 )
     $      ICURCOL = MOD( ICURCOL+1, NPCOL )
         IF( (JJA+NQ-JJ).GT.0 ) THEN
            IF( MYROW.EQ.ICURROW ) THEN
               CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 1, JJA+NQ-JJ,
     $                       A( II+( MIN( JJA+NQ-1, JJ )-1 )*LDA ),
     $                       LDA )
               CALL ZCOPY( JJA+NQ-JJ, A( II+( MIN( JJA+NQ-1, JJ )
     $                     -1)*LDA ), LDA, WORK( MIN( JJA+NQ-1, JJ ) ),
     $                     1 )
            ELSE
               CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', JJA+NQ-JJ, 1,
     $                       WORK( MIN( JJA+NQ-1, JJ ) ), MAX( 1, NQ ),
     $                       ICURROW, MYCOL )
            END IF
         END IF
*
         JN = MIN( ICEIL( J+1, DESCA( NB_ ) ) * DESCA( NB_ ),
     $                    JA + N - 1 )
         IF( MYCOL.EQ.ICURCOL ) THEN
            DO 90 LL = JJ, JJ + JN - J - 1
               IF( RWORK( LL ).NE.ZERO ) THEN
                  TEMP = ABS( WORK( LL ) ) / RWORK( LL )
                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                  TEMP2 = TEMP * ( RWORK( LL ) / RWORK( NQ+LL ) )**2
                  IF( TEMP2.LE.TOL3Z ) THEN
                     IF( IA+M-1.GT.I ) THEN
                        CALL PDZNRM2( IA+M-I-1, RWORK( LL ), A,
     $                                I+1, J+LL-JJ+1, DESCA, 1 )
                        RWORK( NQ+LL ) = RWORK( LL )
                     ELSE
                        RWORK( LL ) = ZERO
                        RWORK( NQ+LL ) = ZERO
                     END IF
                  ELSE
                     RWORK( LL ) = RWORK( LL ) * SQRT( TEMP )
                  END IF
               END IF
   90       CONTINUE
            JJ = JJ + JN - J
         END IF
         ICURCOL = MOD( ICURCOL+1, NPCOL )
*
         DO 110 K = JN+1, JA+N-1, DESCA( NB_ )
            KB = MIN( JA+N-K, DESCA( NB_ ) )
*
            IF( MYCOL.EQ.ICURCOL ) THEN
               DO 100 LL = JJ, JJ+KB-1
                  IF( RWORK(LL).NE.ZERO ) THEN
                     TEMP = ABS( WORK( LL ) ) / RWORK( LL )
                     TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                     TEMP2 = TEMP * ( RWORK( LL ) / RWORK( NQ+LL ) )**2
                     IF( TEMP2.LE.TOL3Z ) THEN
                        IF( IA+M-1.GT.I ) THEN
                           CALL PDZNRM2( IA+M-I-1, RWORK( LL ), A,
     $                                   I+1, K+LL-JJ, DESCA, 1 )
                           RWORK( NQ+LL ) = RWORK( LL )
                        ELSE
                           RWORK( LL ) = ZERO
                           RWORK( NQ+LL ) = ZERO
                        END IF
                     ELSE
                        RWORK( LL ) = RWORK( LL ) * SQRT( TEMP )
                     END IF
                  END IF
  100          CONTINUE
               JJ = JJ + KB
            END IF
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
  110    CONTINUE
*
  120 CONTINUE
*
      WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
      RWORK( 1 ) = DBLE( LRWMIN )
*
      RETURN
*
*     End of PZGEQPF
*
      END