1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
SUBROUTINE PZGEQPF( M, N, A, IA, JA, DESCA, IPIV, TAU, WORK,
$ LWORK, RWORK, LRWORK, INFO )
*
* -- ScaLAPACK routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 20, 2019
*
* .. Scalar Arguments ..
INTEGER IA, JA, INFO, LRWORK, LWORK, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), IPIV( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PZGEQPF computes a QR factorization with column pivoting of a
* M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1):
*
* sub( A ) * P = Q * R.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, the local pieces of the M-by-N distributed matrix
* sub( A ) which is to be factored. On exit, the elements on
* and above the diagonal of sub( A ) contain the min(M,N) by N
* upper trapezoidal matrix R (R is upper triangular if M >= N);
* the elements below the diagonal, with the array TAU, repre-
* sent the unitary matrix Q as a product of elementary
* reflectors (see Further Details).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* IPIV (local output) INTEGER array, dimension LOCc(JA+N-1).
* On exit, if IPIV(I) = K, the local i-th column of sub( A )*P
* was the global K-th column of sub( A ). IPIV is tied to the
* distributed matrix A.
*
* TAU (local output) COMPLEX*16, array, dimension
* LOCc(JA+MIN(M,N)-1). This array contains the scalar factors
* TAU of the elementary reflectors. TAU is tied to the
* distributed matrix A.
*
* WORK (local workspace/local output) COMPLEX*16 array,
* dimension (LWORK)
* On exit, WORK(1) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= MAX(3,Mp0 + Nq0).
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* RWORK (local workspace/local output) DOUBLE PRECISION array,
* dimension (LRWORK)
* On exit, RWORK(1) returns the minimal and optimal LRWORK.
*
* LRWORK (local or global input) INTEGER
* The dimension of the array RWORK.
* LRWORK is local input and must be at least
* LRWORK >= LOCc(JA+N-1)+Nq0.
*
* IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* Mp0 = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ),
* Nq0 = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ),
* LOCc(JA+N-1) = NUMROC( JA+N-1, NB_A, MYCOL, CSRC_A, NPCOL )
*
* and NUMROC, INDXG2P are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* If LRWORK = -1, then LRWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of elementary reflectors
*
* Q = H(1) H(2) . . . H(n)
*
* Each H(i) has the form
*
* H = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
* A(ia+i-1:ia+m-1,ja+i-1).
*
* The matrix P is represented in jpvt as follows: If
* jpvt(j) = i
* then the jth column of P is the ith canonical unit vector.
*
* References
* ==========
*
* For modifications introduced in Scalapack 2.1
* LAWN 295
* New robust ScaLAPACK routine for computing the QR factorization with column pivoting
* Zvonimir Bujanovic, Zlatko Drmac
* http://www.netlib.org/lapack/lawnspdf/lawn295.pdf
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IACOL, IAROW, ICOFF, ICTXT, ICURROW,
$ ICURCOL, II, IIA, IOFFA, IPCOL, IROFF, ITEMP,
$ J, JB, JJ, JJA, JJPVT, JN, KB, K, KK, KSTART,
$ KSTEP, LDA, LL, LRWMIN, LWMIN, MN, MP, MYCOL,
$ MYROW, NPCOL, NPROW, NQ, NQ0, PVT
DOUBLE PRECISION TEMP, TEMP2, TOL3Z
COMPLEX*16 AJJ, ALPHA
* ..
* .. Local Arrays ..
INTEGER DESCN( DLEN_ ), IDUM1( 2 ), IDUM2( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCSET, IGERV2D,
$ IGESD2D, INFOG1L, INFOG2L, PCHK1MAT, PDAMAX,
$ PDZNRM2, PXERBLA, PZELSET,
$ PZLARFC, PZLARFG, ZCOPY, ZGEBR2D,
$ ZGEBS2D, ZGERV2D, ZGESD2D, ZLARFG,
$ ZSWAP
* ..
* .. External Functions ..
INTEGER ICEIL, INDXG2P, NUMROC
EXTERNAL ICEIL, INDXG2P, NUMROC
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DCMPLX, DCONJG, IDINT, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(600+CTXT_)
ELSE
CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
IF( INFO.EQ.0 ) THEN
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
$ NPROW )
IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
NQ0 = NUMROC( JA+N-1, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
LWMIN = MAX( 3, MP + NQ )
LRWMIN = NQ0 + NQ
*
WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
RWORK( 1 ) = DBLE( LRWMIN )
LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
IF( LWORK.EQ.-1 ) THEN
IDUM1( 1 ) = -1
ELSE
IDUM1( 1 ) = 1
END IF
IDUM2( 1 ) = 10
IF( LRWORK.EQ.-1 ) THEN
IDUM1( 2 ) = -1
ELSE
IDUM1( 2 ) = 1
END IF
IDUM2( 2 ) = 12
CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, 2, IDUM1, IDUM2,
$ INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZGEQPF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
IF( MYROW.EQ.IAROW )
$ MP = MP - IROFF
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFF
MN = MIN( M, N )
TOL3Z = SQRT( DLAMCH('Epsilon') )
*
* Initialize the array of pivots
*
LDA = DESCA( LLD_ )
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
KSTEP = NPCOL * DESCA( NB_ )
*
IF( MYCOL.EQ.IACOL ) THEN
*
* Handle first block separately
*
JB = JN - JA + 1
DO 10 LL = JJA, JJA+JB-1
IPIV( LL ) = JA + LL - JJA
10 CONTINUE
KSTART = JN + KSTEP - DESCA( NB_ )
*
* Loop over remaining block of columns
*
DO 30 KK = JJA+JB, JJA+NQ-1, DESCA( NB_ )
KB = MIN( JJA+NQ-KK, DESCA( NB_ ) )
DO 20 LL = KK, KK+KB-1
IPIV( LL ) = KSTART+LL-KK+1
20 CONTINUE
KSTART = KSTART + KSTEP
30 CONTINUE
ELSE
KSTART = JN + ( MOD( MYCOL-IACOL+NPCOL, NPCOL )-1 )*
$ DESCA( NB_ )
DO 50 KK = JJA, JJA+NQ-1, DESCA( NB_ )
KB = MIN( JJA+NQ-KK, DESCA( NB_ ) )
DO 40 LL = KK, KK+KB-1
IPIV( LL ) = KSTART+LL-KK+1
40 CONTINUE
KSTART = KSTART + KSTEP
50 CONTINUE
END IF
*
* Initialize partial column norms, handle first block separately
*
CALL DESCSET( DESCN, 1, DESCA( N_ ), 1, DESCA( NB_ ), MYROW,
$ DESCA( CSRC_ ), ICTXT, 1 )
*
JJ = JJA
IF( MYCOL.EQ.IACOL ) THEN
DO 60 KK = 0, JB-1
CALL PDZNRM2( M, RWORK( JJ+KK ), A, IA, JA+KK, DESCA, 1 )
RWORK( NQ+JJ+KK ) = RWORK( JJ+KK )
60 CONTINUE
JJ = JJ + JB
END IF
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over the remaining blocks of columns
*
DO 80 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 70 KK = 0, JB-1
CALL PDZNRM2( M, RWORK( JJ+KK ), A, IA, J+KK, DESCA, 1 )
RWORK( NQ+JJ+KK ) = RWORK( JJ+KK )
70 CONTINUE
JJ = JJ + JB
END IF
ICURCOL = MOD( ICURCOL+1, NPCOL )
80 CONTINUE
*
* Compute factorization
*
DO 120 J = JA, JA+MN-1
I = IA + J - JA
*
CALL INFOG1L( J, DESCA( NB_ ), NPCOL, MYCOL, DESCA( CSRC_ ),
$ JJ, ICURCOL )
K = JA + N - J
IF( K.GT.1 ) THEN
CALL PDAMAX( K, TEMP, PVT, RWORK, 1, J, DESCN,
$ DESCN( M_ ) )
ELSE
PVT = J
END IF
IF( J.NE.PVT ) THEN
CALL INFOG1L( PVT, DESCA( NB_ ), NPCOL, MYCOL,
$ DESCA( CSRC_ ), JJPVT, IPCOL )
IF( ICURCOL.EQ.IPCOL ) THEN
IF( MYCOL.EQ.ICURCOL ) THEN
CALL ZSWAP( MP, A( IIA+(JJ-1)*LDA ), 1,
$ A( IIA+(JJPVT-1)*LDA ), 1 )
ITEMP = IPIV( JJPVT )
IPIV( JJPVT ) = IPIV( JJ )
IPIV( JJ ) = ITEMP
RWORK( JJPVT ) = RWORK( JJ )
RWORK( NQ+JJPVT ) = RWORK( NQ+JJ )
END IF
ELSE
IF( MYCOL.EQ.ICURCOL ) THEN
*
CALL ZGESD2D( ICTXT, MP, 1, A( IIA+(JJ-1)*LDA ), LDA,
$ MYROW, IPCOL )
WORK( 1 ) = DCMPLX( DBLE( IPIV( JJ ) ) )
WORK( 2 ) = DCMPLX( RWORK( JJ ) )
WORK( 3 ) = DCMPLX( RWORK( JJ + NQ ) )
CALL ZGESD2D( ICTXT, 3, 1, WORK, 3, MYROW, IPCOL )
*
CALL ZGERV2D( ICTXT, MP, 1, A( IIA+(JJ-1)*LDA ), LDA,
$ MYROW, IPCOL )
CALL IGERV2D( ICTXT, 1, 1, IPIV( JJ ), 1, MYROW,
$ IPCOL )
*
ELSE IF( MYCOL.EQ.IPCOL ) THEN
*
CALL ZGESD2D( ICTXT, MP, 1, A( IIA+(JJPVT-1)*LDA ),
$ LDA, MYROW, ICURCOL )
CALL IGESD2D( ICTXT, 1, 1, IPIV( JJPVT ), 1, MYROW,
$ ICURCOL )
*
CALL ZGERV2D( ICTXT, MP, 1, A( IIA+(JJPVT-1)*LDA ),
$ LDA, MYROW, ICURCOL )
CALL ZGERV2D( ICTXT, 3, 1, WORK, 3, MYROW, ICURCOL )
IPIV( JJPVT ) = IDINT( DBLE( WORK( 1 ) ) )
RWORK( JJPVT ) = DBLE( WORK( 2 ) )
RWORK( JJPVT+NQ ) = DBLE( WORK( 3 ) )
*
END IF
*
END IF
*
END IF
*
* Generate elementary reflector H(i)
*
CALL INFOG1L( I, DESCA( MB_ ), NPROW, MYROW, DESCA( RSRC_ ),
$ II, ICURROW )
IF( DESCA( M_ ).EQ.1 ) THEN
IF( MYROW.EQ.ICURROW ) THEN
IF( MYCOL.EQ.ICURCOL ) THEN
IOFFA = II+(JJ-1)*DESCA( LLD_ )
AJJ = A( IOFFA )
CALL ZLARFG( 1, AJJ, A( IOFFA ), 1, TAU( JJ ) )
IF( N.GT.1 ) THEN
ALPHA = CMPLX( ONE ) - DCONJG( TAU( JJ ) )
CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', 1, 1, ALPHA,
$ 1 )
CALL ZSCAL( NQ-JJ, ALPHA, A( IOFFA+DESCA( LLD_ ) ),
$ DESCA( LLD_ ) )
END IF
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1,
$ TAU( JJ ), 1 )
A( IOFFA ) = AJJ
ELSE
IF( N.GT.1 ) THEN
CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', 1, 1, ALPHA,
$ 1, ICURROW, ICURCOL )
CALL ZSCAL( NQ-JJ+1, ALPHA, A( I ), DESCA( LLD_ ) )
END IF
END IF
ELSE IF( MYCOL.EQ.ICURCOL ) THEN
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, TAU( JJ ),
$ 1, ICURROW, ICURCOL )
END IF
*
ELSE
*
CALL PZLARFG( M-J+JA, AJJ, I, J, A, MIN( I+1, IA+M-1 ), J,
$ DESCA, 1, TAU )
IF( J.LT.JA+N-1 ) THEN
*
* Apply H(i) to A(ia+j-ja:ia+m-1,j+1:ja+n-1) from the left
*
CALL PZELSET( A, I, J, DESCA, DCMPLX( ONE ) )
CALL PZLARFC( 'Left', M-J+JA, JA+N-1-J, A, I, J, DESCA,
$ 1, TAU, A, I, J+1, DESCA, WORK )
END IF
CALL PZELSET( A, I, J, DESCA, AJJ )
*
END IF
*
* Update partial columns norms
*
IF( MYCOL.EQ.ICURCOL )
$ JJ = JJ + 1
IF( MOD( J, DESCA( NB_ ) ).EQ.0 )
$ ICURCOL = MOD( ICURCOL+1, NPCOL )
IF( (JJA+NQ-JJ).GT.0 ) THEN
IF( MYROW.EQ.ICURROW ) THEN
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 1, JJA+NQ-JJ,
$ A( II+( MIN( JJA+NQ-1, JJ )-1 )*LDA ),
$ LDA )
CALL ZCOPY( JJA+NQ-JJ, A( II+( MIN( JJA+NQ-1, JJ )
$ -1)*LDA ), LDA, WORK( MIN( JJA+NQ-1, JJ ) ),
$ 1 )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', JJA+NQ-JJ, 1,
$ WORK( MIN( JJA+NQ-1, JJ ) ), MAX( 1, NQ ),
$ ICURROW, MYCOL )
END IF
END IF
*
JN = MIN( ICEIL( J+1, DESCA( NB_ ) ) * DESCA( NB_ ),
$ JA + N - 1 )
IF( MYCOL.EQ.ICURCOL ) THEN
DO 90 LL = JJ, JJ + JN - J - 1
IF( RWORK( LL ).NE.ZERO ) THEN
TEMP = ABS( WORK( LL ) ) / RWORK( LL )
TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
TEMP2 = TEMP * ( RWORK( LL ) / RWORK( NQ+LL ) )**2
IF( TEMP2.LE.TOL3Z ) THEN
IF( IA+M-1.GT.I ) THEN
CALL PDZNRM2( IA+M-I-1, RWORK( LL ), A,
$ I+1, J+LL-JJ+1, DESCA, 1 )
RWORK( NQ+LL ) = RWORK( LL )
ELSE
RWORK( LL ) = ZERO
RWORK( NQ+LL ) = ZERO
END IF
ELSE
RWORK( LL ) = RWORK( LL ) * SQRT( TEMP )
END IF
END IF
90 CONTINUE
JJ = JJ + JN - J
END IF
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
DO 110 K = JN+1, JA+N-1, DESCA( NB_ )
KB = MIN( JA+N-K, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 100 LL = JJ, JJ+KB-1
IF( RWORK(LL).NE.ZERO ) THEN
TEMP = ABS( WORK( LL ) ) / RWORK( LL )
TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
TEMP2 = TEMP * ( RWORK( LL ) / RWORK( NQ+LL ) )**2
IF( TEMP2.LE.TOL3Z ) THEN
IF( IA+M-1.GT.I ) THEN
CALL PDZNRM2( IA+M-I-1, RWORK( LL ), A,
$ I+1, K+LL-JJ, DESCA, 1 )
RWORK( NQ+LL ) = RWORK( LL )
ELSE
RWORK( LL ) = ZERO
RWORK( NQ+LL ) = ZERO
END IF
ELSE
RWORK( LL ) = RWORK( LL ) * SQRT( TEMP )
END IF
END IF
100 CONTINUE
JJ = JJ + KB
END IF
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
110 CONTINUE
*
120 CONTINUE
*
WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
RWORK( 1 ) = DBLE( LRWMIN )
*
RETURN
*
* End of PZGEQPF
*
END
|