1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
SUBROUTINE PZGERFS( TRANS, N, NRHS, A, IA, JA, DESCA, AF, IAF,
$ JAF, DESCAF, IPIV, B, IB, JB, DESCB, X, IX,
$ JX, DESCX, FERR, BERR, WORK, LWORK, RWORK,
$ LRWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER IA, IAF, IB, IX, INFO, JA, JAF, JB, JX,
$ LRWORK, LWORK, N, NRHS
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCAF( * ), DESCB( * ),
$ DESCX( * ), IPIV( * )
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * )
* ..
*
* Purpose
* =======
*
* PZGERFS improves the computed solution to a system of linear
* equations and provides error bounds and backward error estimates for
* the solutions.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* In the following comments, sub( A ), sub( X ) and sub( B ) denote
* respectively A(IA:IA+N-1,JA:JA+N-1), X(IX:IX+N-1,JX:JX+NRHS-1) and
* B(IB:IB+N-1,JB:JB+NRHS-1).
*
* Arguments
* =========
*
* TRANS (global input) CHARACTER*1
* Specifies the form of the system of equations.
* = 'N': sub( A ) * sub( X ) = sub( B ) (No transpose)
* = 'T': sub( A )**T * sub( X ) = sub( B ) (Transpose)
* = 'C': sub( A )**H * sub( X ) = sub( B )
* (Conjugate transpose)
*
* N (global input) INTEGER
* The order of the matrix sub( A ). N >= 0.
*
* NRHS (global input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices sub( B ) and sub( X ). NRHS >= 0.
*
* A (local input) COMPLEX*16 pointer into the local
* memory to an array of local dimension (LLD_A,LOCc(JA+N-1)).
* This array contains the local pieces of the distributed
* matrix sub( A ).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* AF (local input) COMPLEX*16 pointer into the local
* memory to an array of local dimension (LLD_AF,LOCc(JA+N-1)).
* This array contains the local pieces of the distributed
* factors of the matrix sub( A ) = P * L * U as computed by
* PZGETRF.
*
* IAF (global input) INTEGER
* The row index in the global array AF indicating the first
* row of sub( AF ).
*
* JAF (global input) INTEGER
* The column index in the global array AF indicating the
* first column of sub( AF ).
*
* DESCAF (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix AF.
*
* IPIV (local input) INTEGER array of dimension LOCr(M_AF)+MB_AF.
* This array contains the pivoting information as computed
* by PZGETRF. IPIV(i) -> The global row local row i
* was swapped with. This array is tied to the distributed
* matrix A.
*
* B (local input) COMPLEX*16 pointer into the local
* memory to an array of local dimension
* (LLD_B,LOCc(JB+NRHS-1)). This array contains the local
* pieces of the distributed matrix of right hand sides
* sub( B ).
*
* IB (global input) INTEGER
* The row index in the global array B indicating the first
* row of sub( B ).
*
* JB (global input) INTEGER
* The column index in the global array B indicating the
* first column of sub( B ).
*
* DESCB (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix B.
*
* X (local input and output) COMPLEX*16 pointer into the
* local memory to an array of local dimension
* (LLD_X,LOCc(JX+NRHS-1)). On entry, this array contains
* the local pieces of the distributed matrix solution
* sub( X ). On exit, the improved solution vectors.
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* FERR (local output) DOUBLE PRECISION array of local dimension
* LOCc(JB+NRHS-1).
* The estimated forward error bound for each solution vector
* of sub( X ). If XTRUE is the true solution corresponding
* to sub( X ), FERR is an estimated upper bound for the
* magnitude of the largest element in (sub( X ) - XTRUE)
* divided by the magnitude of the largest element in sub( X ).
* The estimate is as reliable as the estimate for RCOND, and
* is almost always a slight overestimate of the true error.
* This array is tied to the distributed matrix X.
*
* BERR (local output) DOUBLE PRECISION array of local dimension
* LOCc(JB+NRHS-1). The componentwise relative backward
* error of each solution vector (i.e., the smallest re-
* lative change in any entry of sub( A ) or sub( B )
* that makes sub( X ) an exact solution).
* This array is tied to the distributed matrix X.
*
* WORK (local workspace/local output) COMPLEX*16 array,
* dimension (LWORK)
* On exit, WORK(1) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= 2*LOCr( N + MOD(IA-1,MB_A) )
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* RWORK (local workspace/local output) DOUBLE PRECISION array,
* dimension (LRWORK)
* On exit, RWORK(1) returns the minimal and optimal LRWORK.
*
* LRWORK (local or global input) INTEGER
* The dimension of the array RWORK.
* LRWORK is local input and must be at least
* LRWORK >= LOCr( N + MOD(IB-1,MB_B) ).
*
* If LRWORK = -1, then LRWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Internal Parameters
* ===================
*
* ITMAX is the maximum number of steps of iterative refinement.
*
* Notes
* =====
*
* This routine temporarily returns when N <= 1.
*
* The distributed submatrices op( A ) and op( AF ) (respectively
* sub( X ) and sub( B ) ) should be distributed the same way on the
* same processes. These conditions ensure that sub( A ) and sub( AF )
* (resp. sub( X ) and sub( B ) ) are "perfectly" aligned.
*
* Moreover, this routine requires the distributed submatrices sub( A ),
* sub( AF ), sub( X ), and sub( B ) to be aligned on a block boundary,
* i.e., if f(x,y) = MOD( x-1, y ):
* f( IA, DESCA( MB_ ) ) = f( JA, DESCA( NB_ ) ) = 0,
* f( IAF, DESCAF( MB_ ) ) = f( JAF, DESCAF( NB_ ) ) = 0,
* f( IB, DESCB( MB_ ) ) = f( JB, DESCB( NB_ ) ) = 0, and
* f( IX, DESCX( MB_ ) ) = f( JX, DESCX( NB_ ) ) = 0.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
DOUBLE PRECISION ZERO, RONE, TWO, THREE
PARAMETER ( ZERO = 0.0D+0, RONE = 1.0D+0, TWO = 2.0D+0,
$ THREE = 3.0D+0 )
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, NOTRAN
CHARACTER TRANSN, TRANST
INTEGER COUNT, IACOL, IAFCOL, IAFROW, IAROW, IXBCOL,
$ IXBROW, IXCOL, IXROW, ICOFFA, ICOFFAF, ICOFFB,
$ ICOFFX, ICTXT, ICURCOL, IDUM, II, IIXB, IIW,
$ IOFFXB, IPB, IPR, IPV, IROFFA, IROFFAF, IROFFB,
$ IROFFX, IW, J, JBRHS, JJ, JJFBE, JJXB, JN, JW,
$ K, KASE, LDXB, LRWMIN, LWMIN, MYCOL, MYRHS,
$ MYROW, NP, NP0, NPCOL, NPMOD, NPROW, NZ
DOUBLE PRECISION EPS, EST, LSTRES, S, SAFE1, SAFE2, SAFMIN
COMPLEX*16 ZDUM
* ..
* .. Local Arrays ..
INTEGER DESCW( DLEN_ ), IDUM1( 5 ), IDUM2( 5 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, INDXG2P, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL ICEIL, INDXG2P, LSAME, NUMROC, PDLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCSET, DGAMX2D,
$ INFOG2L, PCHK2MAT, PXERBLA, PZAGEMV, PZAXPY,
$ PZCOPY, PZGEMV, PZGETRS, PZLACON,
$ ZGEBR2D, ZGEBS2D
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, ICHAR, MAX, MIN, MOD
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters.
*
NOTRAN = LSAME( TRANS, 'N' )
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(700+CTXT_)
ELSE
CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 7, INFO )
CALL CHK1MAT( N, 2, N, 2, IAF, JAF, DESCAF, 11, INFO )
CALL CHK1MAT( N, 2, NRHS, 3, IB, JB, DESCB, 16, INFO )
CALL CHK1MAT( N, 2, NRHS, 3, IX, JX, DESCX, 20, INFO )
IF( INFO.EQ.0 ) THEN
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
IROFFAF = MOD( IAF-1, DESCAF( MB_ ) )
ICOFFAF = MOD( JAF-1, DESCAF( NB_ ) )
IROFFB = MOD( IB-1, DESCB( MB_ ) )
ICOFFB = MOD( JB-1, DESCB( NB_ ) )
IROFFX = MOD( IX-1, DESCX( MB_ ) )
ICOFFX = MOD( JX-1, DESCX( NB_ ) )
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
$ NPROW )
IAFCOL = INDXG2P( JAF, DESCAF( NB_ ), MYCOL,
$ DESCAF( CSRC_ ), NPCOL )
IAFROW = INDXG2P( IAF, DESCAF( MB_ ), MYROW,
$ DESCAF( RSRC_ ), NPROW )
IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
CALL INFOG2L( IB, JB, DESCB, NPROW, NPCOL, MYROW, MYCOL,
$ IIXB, JJXB, IXBROW, IXBCOL )
IXROW = INDXG2P( IX, DESCX( MB_ ), MYROW, DESCX( RSRC_ ),
$ NPROW )
IXCOL = INDXG2P( JX, DESCX( NB_ ), MYCOL, DESCX( CSRC_ ),
$ NPCOL )
NPMOD = NUMROC( N+IROFFA, DESCA( MB_ ), MYROW, IAROW,
$ NPROW )
LWMIN = 2 * NPMOD
LRWMIN = NPMOD
WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
RWORK( 1 ) = DBLE( LRWMIN )
LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
*
IF( ( .NOT.NOTRAN ) .AND. ( .NOT.LSAME( TRANS, 'T' ) ) .AND.
$ ( .NOT.LSAME( TRANS, 'C' ) ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( IROFFA.NE.0 ) THEN
INFO = -5
ELSE IF( ICOFFA.NE.0 ) THEN
INFO = -6
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 700 + NB_ )
ELSE IF( DESCA( MB_ ).NE.DESCAF( MB_ ) ) THEN
INFO = -( 1100 + MB_ )
ELSE IF( IROFFAF.NE.0 .OR. IAROW.NE.IAFROW ) THEN
INFO = -9
ELSE IF( DESCA( NB_ ).NE.DESCAF( NB_ ) ) THEN
INFO = -( 1100 + NB_ )
ELSE IF( ICOFFAF.NE.0 .OR. IACOL.NE.IAFCOL ) THEN
INFO = -10
ELSE IF( ICTXT.NE.DESCAF( CTXT_ ) ) THEN
INFO = -( 1100 + CTXT_ )
ELSE IF( IROFFA.NE.IROFFB .OR. IAROW.NE.IXBROW ) THEN
INFO = -14
ELSE IF( DESCA( MB_ ).NE.DESCB( MB_ ) ) THEN
INFO = -( 1600 + MB_ )
ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
INFO = -( 1600 + CTXT_ )
ELSE IF( DESCB( MB_ ).NE.DESCX( MB_ ) ) THEN
INFO = -( 2000 + MB_ )
ELSE IF( IROFFX.NE.0 .OR. IXBROW.NE.IXROW ) THEN
INFO = -18
ELSE IF( DESCB( NB_ ).NE.DESCX( NB_ ) ) THEN
INFO = -( 2000 + NB_ )
ELSE IF( ICOFFB.NE.ICOFFX .OR. IXBCOL.NE.IXCOL ) THEN
INFO = -19
ELSE IF( ICTXT.NE.DESCX( CTXT_ ) ) THEN
INFO = -( 2000 + CTXT_ )
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -24
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -26
END IF
END IF
*
IF( NOTRAN ) THEN
IDUM1( 1 ) = ICHAR( 'N' )
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
IDUM1( 1 ) = ICHAR( 'T' )
ELSE
IDUM1( 1 ) = ICHAR( 'C' )
END IF
IDUM2( 1 ) = 1
IDUM1( 2 ) = N
IDUM2( 2 ) = 2
IDUM1( 3 ) = NRHS
IDUM2( 3 ) = 3
IF( LWORK.EQ.-1 ) THEN
IDUM1( 4 ) = -1
ELSE
IDUM1( 4 ) = 1
END IF
IDUM2( 4 ) = 24
IF( LRWORK.EQ.-1 ) THEN
IDUM1( 5 ) = -1
ELSE
IDUM1( 5 ) = 1
END IF
IDUM2( 5 ) = 26
CALL PCHK2MAT( N, 2, N, 2, IA, JA, DESCA, 7, N, 2, N, 2, IAF,
$ JAF, DESCAF, 11, 5, IDUM1, IDUM2, INFO )
CALL PCHK2MAT( N, 2, NRHS, 3, IB, JB, DESCB, 16, N, 2, NRHS, 3,
$ IX, JX, DESCX, 20, 5, IDUM1, IDUM2, INFO )
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZGERFS', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
JJFBE = JJXB
MYRHS = NUMROC( JB+NRHS-1, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
$ NPCOL )
*
* Quick return if possible
*
IF( N.LE.1 .OR. NRHS.EQ.0 ) THEN
DO 10 JJ = JJFBE, MYRHS
FERR( JJ ) = ZERO
BERR( JJ ) = ZERO
10 CONTINUE
RETURN
END IF
*
IF( NOTRAN ) THEN
TRANSN = 'N'
TRANST = 'C'
ELSE
TRANSN = 'C'
TRANST = 'N'
END IF
*
NP0 = NUMROC( N+IROFFB, DESCB( MB_ ), MYROW, IXBROW, NPROW )
CALL DESCSET( DESCW, N+IROFFB, 1, DESCA( MB_ ), 1, IXBROW, IXBCOL,
$ ICTXT, MAX( 1, NP0 ) )
IPB = 1
IPR = 1
IPV = IPR + NP0
IF( MYROW.EQ.IXBROW ) THEN
IIW = 1 + IROFFB
NP = NP0 - IROFFB
ELSE
IIW = 1
NP = NP0
END IF
IW = 1 + IROFFB
JW = 1
LDXB = DESCB( LLD_ )
IOFFXB = ( JJXB-1 )*LDXB
*
* NZ = 1 + maximum number of nonzero entries in each row of sub( A )
*
NZ = N + 1
EPS = PDLAMCH( ICTXT, 'Epsilon' )
SAFMIN = PDLAMCH( ICTXT, 'Safe minimum' )
SAFE1 = NZ*SAFMIN
SAFE2 = SAFE1 / EPS
JN = MIN( ICEIL( JB, DESCB( NB_ ) ) * DESCB( NB_ ), JB+NRHS-1 )
*
* Handle first block separately
*
JBRHS = JN - JB + 1
DO 100 K = 0, JBRHS-1
*
COUNT = 1
LSTRES = THREE
20 CONTINUE
*
* Loop until stopping criterion is satisfied.
*
* Compute residual R = sub(B) - op(sub(A)) * sub(X),
* where op(sub(A)) = sub(A), or sub(A)' (A**T or A**H),
* depending on TRANS.
*
CALL PZCOPY( N, B, IB, JB+K, DESCB, 1, WORK( IPR ), IW, JW,
$ DESCW, 1 )
CALL PZGEMV( TRANS, N, N, -ONE, A, IA, JA, DESCA, X, IX,
$ JX+K, DESCX, 1, ONE, WORK( IPR ), IW, JW,
$ DESCW, 1 )
*
* Compute componentwise relative backward error from formula
*
* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
*
* where abs(Z) is the componentwise absolute value of the
* matrix or vector Z. If the i-th component of the
* denominator is less than SAFE2, then SAFE1 is added to the
* i-th components of the numerator and denominator before
* dividing.
*
IF( MYCOL.EQ.IXBCOL ) THEN
IF( NP.GT.0 ) THEN
DO 30 II = IIXB, IIXB + NP - 1
RWORK( IIW+II-IIXB ) = CABS1( B( II+IOFFXB ) )
30 CONTINUE
END IF
END IF
*
CALL PZAGEMV( TRANS, N, N, RONE, A, IA, JA, DESCA, X, IX, JX+K,
$ DESCX, 1, RONE, RWORK( IPB ), IW, JW, DESCW, 1 )
*
S = ZERO
IF( MYCOL.EQ.IXBCOL ) THEN
IF( NP.GT.0 ) THEN
DO 40 II = IIW-1, IIW+NP-2
IF( RWORK( IPB+II ).GT.SAFE2 ) THEN
S = MAX( S, CABS1( WORK( IPR+II ) ) /
$ RWORK( IPB+II ) )
ELSE
S = MAX( S, ( CABS1( WORK( IPR+II ) )+SAFE1 ) /
$ ( RWORK( IPB+II )+SAFE1 ) )
END IF
40 CONTINUE
END IF
END IF
*
CALL DGAMX2D( ICTXT, 'All', ' ', 1, 1, S, 1, IDUM, IDUM, 1,
$ -1, MYCOL )
IF( MYCOL.EQ.IXBCOL )
$ BERR( JJFBE ) = S
*
* Test stopping criterion. Continue iterating if
* 1) The residual BERR(J+K) is larger than machine epsilon,
* and
* 2) BERR(J+K) decreased by at least a factor of 2 during the
* last iteration, and
* 3) At most ITMAX iterations tried.
*
IF( S.GT.EPS .AND. TWO*S.LE.LSTRES .AND. COUNT.LE.ITMAX ) THEN
*
* Update solution and try again.
*
CALL PZGETRS( TRANS, N, 1, AF, IAF, JAF, DESCAF, IPIV,
$ WORK( IPR ), IW, JW, DESCW, INFO )
CALL PZAXPY( N, ONE, WORK( IPR ), IW, JW, DESCW, 1, X, IX,
$ JX+K, DESCX, 1 )
LSTRES = S
COUNT = COUNT + 1
GO TO 20
END IF
*
* Bound error from formula
*
* norm(sub(X) - XTRUE) / norm(sub(X)) .le. FERR =
* norm( abs(inv(op(sub(A))))*
* ( abs(R) + NZ*EPS*(
* abs(op(sub(A)))*abs(sub(X))+abs(sub(B)))))/norm(sub(X))
*
* where
* norm(Z) is the magnitude of the largest component of Z
* inv(op(sub(A))) is the inverse of op(sub(A))
* abs(Z) is the componentwise absolute value of the matrix
* or vector Z
* NZ is the maximum number of nonzeros in any row of sub(A),
* plus 1
* EPS is machine epsilon
*
* The i-th component of
* abs(R)+NZ*EPS*(abs(op(sub(A)))*abs(sub(X))+abs(sub(B)))
* is incremented by SAFE1 if the i-th component of
* abs(op(sub(A)))*abs(sub(X)) + abs(sub(B)) is less than
* SAFE2.
*
* Use PZLACON to estimate the infinity-norm of the matrix
* inv(op(sub(A))) * diag(W), where
* W = abs(R)+NZ*EPS*(abs(op(sub(A)))*abs(sub(X))+abs(sub(B))).
*
IF( MYCOL.EQ.IXBCOL ) THEN
IF( NP.GT.0 ) THEN
DO 50 II = IIW-1, IIW+NP-2
IF( RWORK( IPB+II ).GT.SAFE2 ) THEN
RWORK( IPB+II ) = CABS1( WORK( IPR+II ) ) +
$ NZ*EPS*RWORK( IPB+II )
ELSE
RWORK( IPB+II ) = CABS1( WORK( IPR+II ) ) +
$ NZ*EPS*RWORK( IPB+II ) + SAFE1
END IF
50 CONTINUE
END IF
END IF
*
KASE = 0
60 CONTINUE
IF( MYCOL.EQ.IXBCOL ) THEN
CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IPR ),
$ DESCW( LLD_ ) )
ELSE
CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IPR ),
$ DESCW( LLD_ ), MYROW, IXBCOL )
END IF
DESCW( CSRC_ ) = MYCOL
CALL PZLACON( N, WORK( IPV ), IW, JW, DESCW, WORK( IPR ),
$ IW, JW, DESCW, EST, KASE )
DESCW( CSRC_ ) = IXBCOL
*
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Multiply by diag(W)*inv(op(sub(A))').
*
CALL PZGETRS( TRANST, N, 1, AF, IAF, JAF, DESCAF,
$ IPIV, WORK( IPR ), IW, JW, DESCW, INFO )
*
IF( MYCOL.EQ.IXBCOL ) THEN
IF( NP.GT.0 ) THEN
DO 70 II = IIW-1, IIW+NP-2
WORK( IPR+II ) = RWORK( IPB+II )*WORK( IPR+II )
70 CONTINUE
END IF
END IF
ELSE
*
* Multiply by inv(op(sub(A)))*diag(W).
*
IF( MYCOL.EQ.IXBCOL ) THEN
IF( NP.GT.0 ) THEN
DO 80 II = IIW-1, IIW+NP-2
WORK( IPR+II ) = RWORK( IPB+II )*WORK( IPR+II )
80 CONTINUE
END IF
END IF
*
CALL PZGETRS( TRANSN, N, 1, AF, IAF, JAF, DESCAF,
$ IPIV, WORK( IPR ), IW, JW, DESCW, INFO )
END IF
GO TO 60
END IF
*
* Normalize error.
*
LSTRES = ZERO
IF( MYCOL.EQ.IXBCOL ) THEN
IF( NP.GT.0 ) THEN
DO 90 II = IIXB, IIXB+NP-1
LSTRES = MAX( LSTRES, CABS1( X( IOFFXB+II ) ) )
90 CONTINUE
END IF
CALL DGAMX2D( ICTXT, 'Column', ' ', 1, 1, LSTRES, 1, IDUM,
$ IDUM, 1, -1, MYCOL )
IF( LSTRES.NE.ZERO )
$ FERR( JJFBE ) = EST / LSTRES
*
JJXB = JJXB + 1
JJFBE = JJFBE + 1
IOFFXB = IOFFXB + LDXB
*
END IF
*
100 CONTINUE
*
ICURCOL = MOD( IXBCOL+1, NPCOL )
*
* Do for each right hand side
*
DO 200 J = JN+1, JB+NRHS-1, DESCB( NB_ )
JBRHS = MIN( JB+NRHS-J, DESCB( NB_ ) )
DESCW( CSRC_ ) = ICURCOL
*
DO 190 K = 0, JBRHS-1
*
COUNT = 1
LSTRES = THREE
110 CONTINUE
*
* Loop until stopping criterion is satisfied.
*
* Compute residual R = sub(B) - op(sub(A)) * sub(X),
* where op(sub(A)) = sub(A), or sub(A)' (A**T or A**H),
* depending on TRANS.
*
CALL PZCOPY( N, B, IB, J+K, DESCB, 1, WORK( IPR ), IW, JW,
$ DESCW, 1 )
CALL PZGEMV( TRANS, N, N, -ONE, A, IA, JA, DESCA, X,
$ IX, J+K, DESCX, 1, ONE, WORK( IPR ), IW, JW,
$ DESCW, 1 )
*
* Compute componentwise relative backward error from formula
*
* max(i) (abs(R(i))/(abs(op(sub(A)))*abs(sub(X)) +
* abs(sub(B)))(i))
*
* where abs(Z) is the componentwise absolute value of the
* matrix or vector Z. If the i-th component of the
* denominator is less than SAFE2, then SAFE1 is added to the
* i-th components of the numerator and denominator before
* dividing.
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( NP.GT.0 ) THEN
DO 120 II = IIXB, IIXB+NP-1
RWORK( IIW+II-IIXB ) = CABS1( B( II+IOFFXB ) )
120 CONTINUE
END IF
END IF
*
CALL PZAGEMV( TRANS, N, N, RONE, A, IA, JA, DESCA, X, IX,
$ J+K, DESCX, 1, RONE, RWORK( IPB ), IW, JW,
$ DESCW, 1 )
*
S = ZERO
IF( MYCOL.EQ.ICURCOL ) THEN
IF( NP.GT.0 )THEN
DO 130 II = IIW-1, IIW+NP-2
IF( RWORK( IPB+II ).GT.SAFE2 ) THEN
S = MAX( S, CABS1( WORK( IPR+II ) ) /
$ RWORK( IPB+II ) )
ELSE
S = MAX( S, ( CABS1( WORK( IPR+II ) )+SAFE1 ) /
$ ( RWORK( IPB+II )+SAFE1 ) )
END IF
130 CONTINUE
END IF
END IF
*
CALL DGAMX2D( ICTXT, 'All', ' ', 1, 1, S, 1, IDUM, IDUM, 1,
$ -1, MYCOL )
IF( MYCOL.EQ.ICURCOL )
$ BERR( JJFBE ) = S
*
* Test stopping criterion. Continue iterating if
* 1) The residual BERR(J+K) is larger than machine epsilon,
* and
* 2) BERR(J+K) decreased by at least a factor of 2 during
* the last iteration, and
* 3) At most ITMAX iterations tried.
*
IF( S.GT.EPS .AND. TWO*S.LE.LSTRES .AND.
$ COUNT.LE.ITMAX ) THEN
*
* Update solution and try again.
*
CALL PZGETRS( TRANS, N, 1, AF, IAF, JAF, DESCAF, IPIV,
$ WORK( IPR ), IW, JW, DESCW, INFO )
CALL PZAXPY( N, ONE, WORK( IPR ), IW, JW, DESCW, 1, X,
$ IX, J+K, DESCX, 1 )
LSTRES = S
COUNT = COUNT + 1
GO TO 110
END IF
*
* Bound error from formula
*
* norm(sub(X) - XTRUE) / norm(sub(X)) .le. FERR =
* norm( abs(inv(op(sub(A))))*
* ( abs(R) + NZ*EPS*(
* abs(op(sub(A)))*abs(sub(X))+abs(sub(B)))))/norm(sub(X))
*
* where
* norm(Z) is the magnitude of the largest component of Z
* inv(op(sub(A))) is the inverse of op(sub(A))
* abs(Z) is the componentwise absolute value of the matrix
* or vector Z
* NZ is the maximum number of nonzeros in any row of sub(A),
* plus 1
* EPS is machine epsilon
*
* The i-th component of
* abs(R)+NZ*EPS*(abs(op(sub(A)))*abs(sub(X))+abs(sub(B)))
* is incremented by SAFE1 if the i-th component of
* abs(op(sub(A)))*abs(sub(X)) + abs(sub(B)) is less than
* SAFE2.
*
* Use PZLACON to estimate the infinity-norm of the matrix
* inv(op(sub(A))) * diag(W), where
* W = abs(R)+NZ*EPS*(abs(op(sub(A)))*abs(sub(X))+abs(sub(B))).
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( NP.GT.0 ) THEN
DO 140 II = IIW-1, IIW+NP-2
IF( RWORK( IPB+II ).GT.SAFE2 ) THEN
RWORK( IPB+II ) = CABS1( WORK( IPR+II ) ) +
$ NZ*EPS*RWORK( IPB+II )
ELSE
RWORK( IPB+II ) = CABS1( WORK( IPR+II ) ) +
$ NZ*EPS*RWORK( IPB+II ) + SAFE1
END IF
140 CONTINUE
END IF
END IF
*
KASE = 0
150 CONTINUE
IF( MYCOL.EQ.ICURCOL ) THEN
CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IPR ),
$ DESCW( LLD_ ) )
ELSE
CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IPR ),
$ DESCW( LLD_ ), MYROW, ICURCOL )
END IF
DESCW( CSRC_ ) = MYCOL
CALL PZLACON( N, WORK( IPV ), IW, JW, DESCW, WORK( IPR ),
$ IW, JW, DESCW, EST, KASE )
DESCW( CSRC_ ) = ICURCOL
*
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Multiply by diag(W)*inv(op(sub(A))').
*
CALL PZGETRS( TRANST, N, 1, AF, IAF, JAF, DESCAF,
$ IPIV, WORK( IPR ), IW, JW, DESCW, INFO )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( NP.GT.0 ) THEN
DO 160 II = IIW-1, IIW+NP-2
WORK( IPR+II ) = RWORK( IPB+II )*
$ WORK( IPR+II )
160 CONTINUE
END IF
END IF
ELSE
*
* Multiply by inv(op(sub(A)))*diag(W).
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( NP.GT.0 ) THEN
DO 170 II = IIW-1, IIW+NP-2
WORK( IPR+II ) = RWORK( IPB+II )*
$ WORK( IPR+II )
170 CONTINUE
END IF
END IF
*
CALL PZGETRS( TRANSN, N, 1, AF, IAF, JAF, DESCAF,
$ IPIV, WORK( IPR ), IW, JW, DESCW,
$ INFO )
END IF
GO TO 150
END IF
*
* Normalize error.
*
LSTRES = ZERO
IF( MYCOL.EQ.ICURCOL ) THEN
IF( NP.GT.0 ) THEN
DO 180 II = IIXB, IIXB+NP-1
LSTRES = MAX( LSTRES, CABS1( X( IOFFXB+II ) ) )
180 CONTINUE
END IF
CALL DGAMX2D( ICTXT, 'Column', ' ', 1, 1, LSTRES,
$ 1, IDUM, IDUM, 1, -1, MYCOL )
IF( LSTRES.NE.ZERO )
$ FERR( JJFBE ) = EST / LSTRES
*
JJXB = JJXB + 1
JJFBE = JJFBE + 1
IOFFXB = IOFFXB + LDXB
*
END IF
*
190 CONTINUE
*
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
200 CONTINUE
*
WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
RWORK( 1 ) = DBLE( LRWMIN )
*
RETURN
*
* End of PZGERFS
*
END
|