File: pzheevr.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (1219 lines) | stat: -rw-r--r-- 47,138 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
      SUBROUTINE PZHEEVR( JOBZ, RANGE, UPLO, N, A, IA, JA, 
     $                    DESCA, VL, VU, IL, IU, M, NZ, W, Z, IZ,
     $                    JZ, DESCZ, 
     $                    WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,
     $                    INFO )

      IMPLICIT NONE
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO

      INTEGER            IA, IL, INFO, IU, IZ, JA, JZ, LIWORK, LRWORK,
     $                   LWORK, M, N, NZ
      DOUBLE PRECISION VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCZ( * ), IWORK( * )
      DOUBLE PRECISION   W( * ), RWORK( * )
      COMPLEX*16         A( * ), WORK( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PZHEEVR computes selected eigenvalues and, optionally, eigenvectors
*  of a complex Hermitian matrix A distributed in 2D blockcyclic format
*  by calling the recommended sequence of ScaLAPACK routines.  
*
*  First, the matrix A is reduced to real symmetric tridiagonal form.
*  Then, the eigenproblem is solved using the parallel MRRR algorithm.
*  Last, if eigenvectors have been computed, a backtransformation is done.
*
*  Upon successful completion, each processor stores a copy of all computed
*  eigenvalues in W. The eigenvector matrix Z is stored in 
*  2D blockcyclic format distributed over all processors.
*
*  For constructive feedback and comments, please contact cvoemel@lbl.gov
*  C. Voemel
*
*
*  Arguments
*  =========
*
*  JOBZ    (global input) CHARACTER*1
*          Specifies whether or not to compute the eigenvectors:
*          = 'N':  Compute eigenvalues only.
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (global input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the interval [VL,VU] will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*  UPLO    (global input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0
*
*  A       (local input/workspace) 2D block cyclic COMPLEX*16 array,
*          global dimension (N, N),
*          local dimension ( LLD_A, LOCc(JA+N-1) )
*          (see Notes below for more detailed explanation of 2d arrays)  
*
*          On entry, the symmetric matrix A.  If UPLO = 'U', only the
*          upper triangular part of A is used to define the elements of
*          the symmetric matrix.  If UPLO = 'L', only the lower
*          triangular part of A is used to define the elements of the
*          symmetric matrix.
*
*          On exit, the lower triangle (if UPLO='L') or the upper
*          triangle (if UPLO='U') of A, including the diagonal, is
*          destroyed.
*
*  IA      (global input) INTEGER
*          A's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*          It should be set to 1 when operating on a full matrix.
*
*  JA      (global input) INTEGER
*          A's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*          It should be set to 1 when operating on a full matrix.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          (The ScaLAPACK descriptor length is DLEN_ = 9.)
*          The array descriptor for the distributed matrix A.
*          The descriptor stores details about the 2D block-cyclic 
*          storage, see the notes below. 
*          If DESCA is incorrect, PZHEEVR cannot work correctly.
*          Also note the array alignment requirements specified below
*
*  VL      (global input) DOUBLE PRECISION 
*          If RANGE='V', the lower bound of the interval to be searched
*          for eigenvalues.  Not referenced if RANGE = 'A' or 'I'.
*
*  VU      (global input) DOUBLE PRECISION 
*          If RANGE='V', the upper bound of the interval to be searched
*          for eigenvalues.  Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          smallest eigenvalue to be returned.  IL >= 1.
*          Not referenced if RANGE = 'A'.
*
*  IU      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          largest eigenvalue to be returned.  min(IL,N) <= IU <= N.
*          Not referenced if RANGE = 'A'.
*
*  M       (global output) INTEGER
*          Total number of eigenvalues found.  0 <= M <= N.
*
*  NZ      (global output) INTEGER
*          Total number of eigenvectors computed.  0 <= NZ <= M.
*          The number of columns of Z that are filled.
*          If JOBZ .NE. 'V', NZ is not referenced.
*          If JOBZ .EQ. 'V', NZ = M 
*
*  W       (global output) DOUBLE PRECISION array, dimension (N)
*          On normal exit, the first M entries contain the selected
*          eigenvalues in ascending order.
*
*  Z       (local output) COMPLEX*16 array,
*          global dimension (N, N),
*          local dimension ( LLD_Z, LOCc(JZ+N-1) )
*          If JOBZ = 'V', then on normal exit the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix
*          corresponding to the selected eigenvalues.
*          If JOBZ = 'N', then Z is not referenced.
*
*  IZ      (global input) INTEGER
*          Z's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*          It should be set to 1 when operating on a full matrix.
*
*  JZ      (global input) INTEGER
*          Z's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*          It should be set to 1 when operating on a full matrix.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*          DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
*  WORK    (local workspace/output) COMPLEX*16  array,
*          dimension (LWORK)
*          WORK(1) returns workspace adequate workspace to allow
*          optimal performance.
*
*  LWORK  (local input) INTEGER
*          Size of WORK array, must be at least 3.
*          If only eigenvalues are requested:
*            LWORK >= N + MAX( NB * ( NP00 + 1 ), NB * 3 )
*          If eigenvectors are requested:
*            LWORK >= N + ( NP00 + MQ00 + NB ) * NB
*          For definitions of NP00 & MQ00, see LRWORK. 
*
*          For optimal performance, greater workspace is needed, i.e.
*            LWORK >= MAX( LWORK, NHETRD_LWORK )
*          Where LWORK is as defined above, and
*          NHETRD_LWORK = N + 2*( ANB+1 )*( 4*NPS+2 ) +
*            ( NPS + 1 ) * NPS
*
*          ICTXT = DESCA( CTXT_ )
*          ANB = PJLAENV( ICTXT, 3, 'PZHETTRD', 'L', 0, 0, 0, 0 )
*          SQNPC = SQRT( DBLE( NPROW * NPCOL ) )
*          NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the
*          optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*          NOTE THAT FOR OPTIMAL PERFORMANCE, LWOPT IS RETURNED
*          (THE OPTIMUM WORKSPACE) RATHER THAN THE MINIMUM NECESSARY
*          WORKSPACE LWMIN WHEN A WORKSPACE QUERY IS ISSUED.
*          FOR VERY SMALL MATRICES, LWOPT >> LWMIN.
*
*  RWORK    (local workspace/output) DOUBLE PRECISION  array,
*          dimension (LRWORK)
*          On return, RWORK(1) contains the optimal amount of
*          workspace required for efficient execution.
*          if JOBZ='N' RWORK(1) = optimal amount of workspace
*             required to compute the eigenvalues.
*          if JOBZ='V' RWORK(1) = optimal amount of workspace
*             required to compute eigenvalues and eigenvectors.
*
*  LRWORK  (local input) INTEGER
*          Size of RWORK, must be at least 3.
*          See below for definitions of variables used to define LRWORK.
*          If no eigenvectors are requested (JOBZ = 'N') then
*             LRWORK >= 2 + 5 * N + MAX( 12 * N, NB * ( NP00 + 1 ) )
*          If eigenvectors are requested (JOBZ = 'V' ) then
*             the amount of workspace required is:
*             LRWORK >= 2 + 5 * N + MAX( 18*N, NP00 * MQ00 + 2 * NB * NB ) +
*               (2 + ICEIL( NEIG, NPROW*NPCOL))*N
*
*          Variable definitions:
*             NEIG = number of eigenvectors requested
*             NB = DESCA( MB_ ) = DESCA( NB_ ) =
*                  DESCZ( MB_ ) = DESCZ( NB_ )
*             NN = MAX( N, NB, 2 )
*             DESCA( RSRC_ ) = DESCA( NB_ ) = DESCZ( RSRC_ ) =
*                              DESCZ( CSRC_ ) = 0
*             NP00 = NUMROC( NN, NB, 0, 0, NPROW )
*             MQ00 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
*             ICEIL( X, Y ) is a ScaLAPACK function returning
*             ceiling(X/Y)
*
*          If LRWORK = -1, then LRWORK is global input and a workspace
*          query is assumed; the routine only calculates the size
*          required for optimal performance for all work arrays. Each of
*          these values is returned in the first entry of the
*          corresponding work arrays, and no error message is issued by
*          PXERBLA.
*
*  IWORK   (local workspace) INTEGER array
*          On return, IWORK(1) contains the amount of integer workspace
*          required.
*
*  LIWORK  (local input) INTEGER
*          size of IWORK
*
*          Let  NNP = MAX( N, NPROW*NPCOL + 1, 4 ). Then:
*          LIWORK >= 12*NNP + 2*N when the eigenvectors are desired
*          LIWORK >= 10*NNP + 2*N when only the eigenvalues have to be computed
*          
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  PZHEEVR assumes IEEE 754 standard compliant arithmetic. 
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrices A(IA:*, JA:*) and Z(IZ:IZ+M-1,JZ:JZ+N-1)
*  must satisfy the following alignment properties:
*
*  1.Identical (quadratic) dimension: 
*    DESCA(M_) = DESCZ(M_) = DESCA(N_) = DESCZ(N_)
*  2.Quadratic conformal blocking: 
*    DESCA(MB_) = DESCA(NB_) = DESCZ(MB_) = DESCZ(NB_)
*    DESCA(RSRC_) = DESCZ(RSRC_)
*  3.MOD( IA-1, MB_A ) = MOD( IZ-1, MB_Z ) = 0
*  4.IAROW = IZROW
*
*
*     .. Parameters ..
      INTEGER            CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_
      PARAMETER          ( CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, COLBRT, DOBCST, FINISH, FIRST, INDEIG,
     $                   LOWER, LQUERY, VALEIG, VSTART, WANTZ
      INTEGER            ANB, DOL, DOU, DSTCOL, DSTROW, EIGCNT, FRSTCL,
     $                   I, IAROW, ICTXT, IIL, IINDERR, IINDWLC, IINFO,
     $                   IIU, IM, INDD, INDD2, INDE, INDE2, INDERR,
     $                   INDILU, INDRTAU, INDRW, INDRWORK, INDTAU,
     $                   INDWLC, INDWORK, IPIL, IPIU, IPROC, IZROW,
     $                   LASTCL, LENGTHI, LENGTHI2, LIWMIN, LLRWORK,
     $                   LLWORK, LRWMIN, LRWOPT, LWMIN, LWOPT, MAXCLS,
     $                   MQ00, MYCOL, MYIL, MYIU, MYPROC, MYROW, MZ, NB,
     $                   NDEPTH, NEEDIL, NEEDIU, NHETRD_LWOPT, NNP,
     $                   NP00, NPCOL, NPROCS, NPROW, NPS, NSPLIT,
     $                   OFFSET, PARITY, RLENGTHI, RLENGTHI2, RSTARTI,
     $                   SIZE1, SIZE2, SQNPC, SRCCOL, SRCROW, STARTI,
     $                   ZOFFSET

      DOUBLE PRECISION            PIVMIN, SAFMIN, SCALE, VLL, VUU, WL,
     $                            WU
*
*     .. Local Arrays ..
      INTEGER            IDUM1( 4 ), IDUM2( 4 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, INDXG2P, NUMROC, PJLAENV
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL            ICEIL, INDXG2P, LSAME, NUMROC, PDLAMCH,
     $                    PJLAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL            BLACS_GRIDINFO, CHK1MAT, DCOPY, DGEBR2D,
     $                    DGEBS2D, DGERV2D, DGESD2D, DLARRC, DLASRT2,
     $                    DSTEGR2A, DSTEGR2B, DSTEGR2, IGEBR2D,
     $                    IGEBS2D, IGERV2D, IGESD2D, IGSUM2D, PCHK1MAT,
     $                    PCHK2MAT, PDLARED1D, PXERBLA, PZELGET,
     $                    PZHENTRD, PZLAEVSWP, PZUNMTR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC           ABS, DBLE, DCMPLX, ICHAR, INT, MAX, MIN, MOD,
     $                    SQRT
*     ..
*     .. Executable Statements ..
*

      INFO = 0

***********************************************************************
*
*     Decode character arguments to find out what the code should do
*
***********************************************************************
      WANTZ = LSAME( JOBZ, 'V' )
      LOWER = LSAME( UPLO, 'L' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
      LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )

***********************************************************************
*
*     GET MACHINE PARAMETERS
*
***********************************************************************
      ICTXT = DESCA( CTXT_ )
      SAFMIN = PDLAMCH( ICTXT, 'Safe minimum' )

***********************************************************************
*
*     Set up pointers into the (complex) WORK array
*     
***********************************************************************
      INDTAU = 1
      INDWORK = INDTAU + N
      LLWORK = LWORK - INDWORK + 1

***********************************************************************
*
*     Set up pointers into the RWORK array
*     
***********************************************************************
      INDRTAU = 1
      INDD = INDRTAU + N
      INDE = INDD + N + 1
      INDD2 = INDE + N + 1
      INDE2 = INDD2 + N
      INDRWORK = INDE2 + N
      LLRWORK = LRWORK - INDRWORK + 1

***********************************************************************
*
*     BLACS PROCESSOR GRID SETUP
*
***********************************************************************
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )


      NPROCS = NPROW * NPCOL
      MYPROC = MYROW * NPCOL + MYCOL
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 800+CTXT_ )
      ELSE IF( WANTZ ) THEN
         IF( ICTXT.NE.DESCZ( CTXT_ ) ) THEN
            INFO = -( 2100+CTXT_ )
         END IF
      END IF

***********************************************************************
*
*     COMPUTE REAL WORKSPACE
*
***********************************************************************
      IF ( ALLEIG ) THEN
         MZ = N
      ELSE IF ( INDEIG ) THEN
         MZ = IU - IL + 1
      ELSE
*        Take upper bound for VALEIG case
         MZ = N
      END IF
*     
      NB =  DESCA( NB_ )
      NP00 = NUMROC( N, NB, 0, 0, NPROW )
      MQ00 = NUMROC( MZ, NB, 0, 0, NPCOL )            
      IF ( WANTZ ) THEN
         INDRW = INDRWORK + MAX(18*N, NP00*MQ00 + 2*NB*NB)
         LRWMIN = INDRW - 1 + (ICEIL(MZ, NPROCS) + 2)*N
         LWMIN = N + MAX((NP00 + MQ00 + NB) * NB, 3 * NB)
      ELSE
         INDRW = INDRWORK + 12*N
         LRWMIN = INDRW - 1
         LWMIN = N + MAX( NB*( NP00 + 1 ), 3 * NB ) 
      END IF

*     The code that validates the input requires 3 workspace entries
      LRWMIN = MAX(3, LRWMIN)
      LRWOPT = LRWMIN
      LWMIN = MAX(3, LWMIN)
      LWOPT = LWMIN
*
      ANB = PJLAENV( ICTXT, 3, 'PZHETTRD', 'L', 0, 0, 0, 0 )
      SQNPC = INT( SQRT( DBLE( NPROCS ) ) )
      NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
      NHETRD_LWOPT = 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS+4 )*NPS
      LWOPT = MAX( LWOPT, N+NHETRD_LWOPT )
*
      SIZE1 = INDRW - INDRWORK

***********************************************************************
*
*     COMPUTE INTEGER WORKSPACE
*
***********************************************************************
      NNP = MAX( N, NPROCS+1, 4 )
      IF ( WANTZ ) THEN
        LIWMIN = 12*NNP + 2*N 
      ELSE
        LIWMIN = 10*NNP + 2*N
      END IF

***********************************************************************
*
*     Set up pointers into the IWORK array
*     
***********************************************************************
*     Pointer to eigenpair distribution over processors
      INDILU = LIWMIN - 2*NPROCS + 1            
      SIZE2 = INDILU - 2*N 
	

***********************************************************************
*
*     Test the input arguments.
*
***********************************************************************
      IF( INFO.EQ.0 ) THEN
         CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, INFO )
         IF( WANTZ )
     $      CALL CHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 21, INFO )
*
         IF( INFO.EQ.0 ) THEN
            IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
               INFO = -1
            ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
               INFO = -2
            ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
               INFO = -3
            ELSE IF( MOD( IA-1, DESCA( MB_ ) ).NE.0 ) THEN
               INFO = -6
            ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
               INFO = -10
            ELSE IF( INDEIG .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
     $                THEN
               INFO = -11
            ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ))
     $                THEN
               INFO = -12
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -21
            ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -23
            ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -25
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 800+NB_ )
            END IF
            IF( WANTZ ) THEN
               IAROW = INDXG2P( 1, DESCA( NB_ ), MYROW, 
     $                       DESCA( RSRC_ ), NPROW )
               IZROW = INDXG2P( 1, DESCA( NB_ ), MYROW, 
     $                          DESCZ( RSRC_ ), NPROW )
               IF( IAROW.NE.IZROW ) THEN
                  INFO = -19
               ELSE IF( MOD( IA-1, DESCA( MB_ ) ).NE.
     $             MOD( IZ-1, DESCZ( MB_ ) ) ) THEN
                  INFO = -19
               ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
                  INFO = -( 2100+M_ )
               ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
                  INFO = -( 2100+N_ )
               ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
                  INFO = -( 2100+MB_ )
               ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
                  INFO = -( 2100+NB_ )
               ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
                  INFO = -( 2100+RSRC_ )
               ELSE IF( DESCA( CSRC_ ).NE.DESCZ( CSRC_ ) ) THEN
                  INFO = -( 2100+CSRC_ )
               ELSE IF( ICTXT.NE.DESCZ( CTXT_ ) ) THEN
                  INFO = -( 2100+CTXT_ )
               END IF
            END IF
         END IF
         IDUM2( 1 ) = 1
         IF( LOWER ) THEN
            IDUM1( 2 ) = ICHAR( 'L' )
         ELSE
            IDUM1( 2 ) = ICHAR( 'U' )
         END IF
         IDUM2( 2 ) = 2
         IF( ALLEIG ) THEN
            IDUM1( 3 ) = ICHAR( 'A' )
         ELSE IF( INDEIG ) THEN
            IDUM1( 3 ) = ICHAR( 'I' )
         ELSE
            IDUM1( 3 ) = ICHAR( 'V' )
         END IF
         IDUM2( 3 ) = 3
         IF( LQUERY ) THEN
            IDUM1( 4 ) = -1
         ELSE
            IDUM1( 4 ) = 1
         END IF
         IDUM2( 4 ) = 4
         IF( WANTZ ) THEN
            IDUM1( 1 ) = ICHAR( 'V' )
            CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 8, N, 4, N, 4,IZ,
     $                     JZ, DESCZ, 21, 4, IDUM1, IDUM2, INFO )
         ELSE
            IDUM1( 1 ) = ICHAR( 'N' )
            CALL PCHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, 4, IDUM1,
     $                     IDUM2, INFO )
         END IF
         WORK( 1 ) = DCMPLX( LWOPT )
         RWORK( 1 ) = DBLE( LRWOPT )
         IWORK( 1 ) = LIWMIN
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PZHEEVR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF

***********************************************************************
*
*     Quick return if possible
*
***********************************************************************
      IF( N.EQ.0 ) THEN
         IF( WANTZ ) THEN
            NZ = 0
         END IF
         M = 0
         WORK( 1 ) = DCMPLX( LWOPT )
         RWORK( 1 ) = DBLE( LRWOPT )
         IWORK( 1 ) = LIWMIN
         RETURN
      END IF

      IF( VALEIG ) THEN
         VLL = VL
         VUU = VU
      ELSE
         VLL = ZERO
         VUU = ZERO
      END IF
*
*     No scaling done here, leave this to MRRR kernel.
*     Scale tridiagonal rather than full matrix.
*
***********************************************************************
*
*     REDUCE MATRIX TO REAL SYMMETRIC TRIDIAGONAL FORM.
*
***********************************************************************


      CALL PZHENTRD( UPLO, N, A, IA, JA, DESCA, RWORK( INDD ),
     $               RWORK( INDE ), WORK( INDTAU ), WORK( INDWORK ),
     $               LLWORK, RWORK( INDRWORK ), LLRWORK,IINFO )


      IF (IINFO .NE. 0) THEN
         CALL PXERBLA( ICTXT, 'PZHENTRD', -IINFO )
         RETURN
      END IF

***********************************************************************
*
*     DISTRIBUTE TRIDIAGONAL TO ALL PROCESSORS
*
***********************************************************************
      OFFSET = 0
      IF( IA.EQ.1 .AND. JA.EQ.1 .AND. 
     $    DESCA( RSRC_ ).EQ.0 .AND. DESCA( CSRC_ ).EQ.0 )
     $   THEN
         CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDD ), 
     $                   RWORK( INDD2 ), RWORK( INDRWORK ), LLRWORK )
*
         CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDE ), 
     $                   RWORK( INDE2 ), RWORK( INDRWORK ), LLRWORK )
         IF( .NOT.LOWER )
     $      OFFSET = 1
      ELSE
         DO 10 I = 1, N
            CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, 
     $                    I+IA-1, I+JA-1, DESCA )
            RWORK( INDD2+I-1 ) = DBLE( WORK( INDWORK ) )
   10    CONTINUE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 I = 1, N - 1
               CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, 
     $                       I+IA-1, I+JA, DESCA )
               RWORK( INDE2+I-1 ) = DBLE( WORK( INDWORK ) )
   20       CONTINUE
         ELSE
            DO 30 I = 1, N - 1
               CALL PZELGET( 'A', ' ', WORK( INDWORK ), A,
     $                       I+IA, I+JA-1, DESCA )
               RWORK( INDE2+I-1 ) = DBLE( WORK( INDWORK ) )
   30       CONTINUE
         END IF
      END IF




***********************************************************************
*
*     SET IIL, IIU
*
***********************************************************************
      IF ( ALLEIG ) THEN 
         IIL = 1
         IIU = N
      ELSE IF ( INDEIG ) THEN
         IIL = IL
         IIU = IU
      ELSE IF ( VALEIG ) THEN
         CALL DLARRC('T', N, VLL, VUU, RWORK( INDD2 ), 
     $    RWORK( INDE2 + OFFSET ), SAFMIN, EIGCNT, IIL, IIU, INFO)
*        Refine upper bound N that was taken 
         MZ = EIGCNT
         IIL = IIL + 1
      ENDIF

      IF(MZ.EQ.0) THEN
         M = 0
         IF( WANTZ ) THEN
            NZ = 0
         END IF
         WORK( 1 ) = DBLE( LWOPT )
         IWORK( 1 ) = LIWMIN
         RETURN
      END IF

      MYIL = 0
      MYIU = 0
      M = 0
      IM = 0

***********************************************************************
*
*     COMPUTE WORK ASSIGNMENTS
*
***********************************************************************

*
*     Each processor computes the work assignments for all processors
*
      CALL PMPIM2( IIL, IIU, NPROCS,
     $             IWORK(INDILU), IWORK(INDILU+NPROCS) )
*
*     Find local work assignment
*
      MYIL = IWORK(INDILU+MYPROC)
      MYIU = IWORK(INDILU+NPROCS+MYPROC)


      ZOFFSET = MAX(0, MYIL - IIL - 1)
      FIRST = ( MYIL .EQ. IIL )


***********************************************************************
*
*     CALLS TO MRRR KERNEL
*
***********************************************************************
      IF(.NOT.WANTZ) THEN
*
*        Compute eigenvalues only.
*
         IINFO = 0
         IF ( MYIL.GT.0 ) THEN
            DOL = 1
            DOU = MYIU - MYIL + 1
            CALL DSTEGR2( JOBZ, 'I', N,  RWORK( INDD2 ),
     $                  RWORK( INDE2+OFFSET ), VLL, VUU, MYIL, MYIU,
     $                  IM, W( 1 ), RWORK( INDRW ), N, 
     $                  MYIU - MYIL + 1,
     $                  IWORK( 1 ), RWORK( INDRWORK ), SIZE1, 
     $                  IWORK( 2*N+1 ), SIZE2, 
     $                  DOL, DOU, ZOFFSET, IINFO )
*           DSTEGR2 zeroes out the entire W array, so we can't just give
*           it the part of W we need.  So here we copy the W entries into
*           their correct location
            DO 49 I = 1, IM
              W( MYIL-IIL+I ) = W( I )
 49         CONTINUE
*           W( MYIL ) is at W( MYIL - IIL + 1 )
*           W( X ) is at W(X - IIL + 1 )
         END IF
         IF (IINFO .NE. 0) THEN
            CALL PXERBLA( ICTXT, 'DSTEGR2', -IINFO )
            RETURN
         END IF
      ELSEIF ( WANTZ .AND. NPROCS.EQ.1 ) THEN
*
*        Compute eigenvalues and -vectors, but only on one processor
*
         IINFO = 0
         IF ( MYIL.GT.0 ) THEN
            DOL = MYIL - IIL + 1
            DOU = MYIU - IIL + 1
            CALL DSTEGR2( JOBZ, 'I', N,  RWORK( INDD2 ),
     $                  RWORK( INDE2+OFFSET ), VLL, VUU, IIL, IIU,
     $                  IM, W( 1 ), RWORK( INDRW ), N, 
     $                  N,
     $                  IWORK( 1 ), RWORK( INDRWORK ), SIZE1, 
     $                  IWORK( 2*N+1 ), SIZE2, DOL, DOU,
     $                  ZOFFSET, IINFO )
         ENDIF
         IF (IINFO .NE. 0) THEN
            CALL PXERBLA( ICTXT, 'DSTEGR2', -IINFO )
            RETURN
         END IF
      ELSEIF ( WANTZ ) THEN
*        Compute representations in parallel.
*        Share eigenvalue computation for root between all processors
*        Then compute the eigenvectors. 
         IINFO = 0
*        Part 1. compute root representations and root eigenvalues
         IF ( MYIL.GT.0 ) THEN
            DOL = MYIL - IIL + 1
            DOU = MYIU - IIL + 1
            CALL DSTEGR2A( JOBZ, 'I', N,  RWORK( INDD2 ),
     $                  RWORK( INDE2+OFFSET ), VLL, VUU, IIL, IIU,
     $                  IM, W( 1 ), RWORK( INDRW ), N, 
     $                  N, RWORK( INDRWORK ), SIZE1, 
     $                  IWORK( 2*N+1 ), SIZE2, DOL, 
     $                  DOU, NEEDIL, NEEDIU,
     $                  INDERR, NSPLIT, PIVMIN, SCALE, WL, WU,
     $                  IINFO )
         ENDIF
         IF (IINFO .NE. 0) THEN
            CALL PXERBLA( ICTXT, 'DSTEGR2A', -IINFO )
            RETURN
         END IF
*
*        The second part of parallel MRRR, the representation tree
*        construction begins. Upon successful completion, the 
*        eigenvectors have been computed. This is indicated by
*        the flag FINISH.
*
         VSTART = .TRUE.
         FINISH = (MYIL.LE.0)
C        Part 2. Share eigenvalues and uncertainties between all processors
         IINDERR = INDRWORK + INDERR - 1

*


*
*        There are currently two ways to communicate eigenvalue information
*        using the BLACS.
*        1.) BROADCAST
*        2.) POINT2POINT between collaborators (those processors working
*            jointly on a cluster.
*        For efficiency, BROADCAST has been disabled.
*        At a later stage, other more efficient communication algorithms 
*        might be implemented, e. g. group or tree-based communication.

         DOBCST = .FALSE.
         IF(DOBCST) THEN
*           First gather everything on the first processor.
*           Then use BROADCAST-based communication 
            DO 45 I = 2, NPROCS
               IF (MYPROC .EQ. (I - 1)) THEN
                  DSTROW = 0
                  DSTCOL = 0
                  STARTI = DOL
                  IWORK(1) = STARTI
                  IF(MYIL.GT.0) THEN
                     LENGTHI = MYIU - MYIL + 1
                  ELSE
                     LENGTHI = 0
                  ENDIF
                  IWORK(2) = LENGTHI
                  CALL IGESD2D( ICTXT, 2, 1, IWORK, 2, 
     $                    DSTROW, DSTCOL )
                  IF (( STARTI.GE.1 ) .AND. ( LENGTHI.GE.1 )) THEN
                     LENGTHI2 = 2*LENGTHI
*                    Copy eigenvalues into communication buffer
                     CALL DCOPY(LENGTHI,W( STARTI ),1,
     $                          RWORK( INDD ), 1)                    
*                    Copy uncertainties into communication buffer
                     CALL DCOPY(LENGTHI,RWORK(IINDERR+STARTI-1),1,
     $                          RWORK( INDD+LENGTHI ), 1)                    
*                    send buffer
                     CALL DGESD2D( ICTXT, LENGTHI2, 
     $                    1, RWORK( INDD ), LENGTHI2,
     $                    DSTROW, DSTCOL )
                  END IF
               ELSE IF (MYPROC .EQ. 0) THEN
                  SRCROW = (I-1) / NPCOL
                  SRCCOL = MOD(I-1, NPCOL)
                  CALL IGERV2D( ICTXT, 2, 1, IWORK, 2, 
     $                    SRCROW, SRCCOL )
                  STARTI = IWORK(1)
                  LENGTHI = IWORK(2)
                  IF (( STARTI.GE.1 ) .AND. ( LENGTHI.GE.1 )) THEN
                     LENGTHI2 = 2*LENGTHI
*                    receive buffer
                     CALL DGERV2D( ICTXT, LENGTHI2, 1,
     $                 RWORK(INDD), LENGTHI2, SRCROW, SRCCOL )
*                    copy eigenvalues from communication buffer
                     CALL DCOPY( LENGTHI, RWORK(INDD), 1,
     $                          W( STARTI ), 1)                    
*                    copy uncertainties (errors) from communication buffer
                     CALL DCOPY(LENGTHI,RWORK(INDD+LENGTHI),1,
     $                          RWORK( IINDERR+STARTI-1 ), 1)     
                  END IF
               END IF
  45        CONTINUE
            LENGTHI = IIU - IIL + 1
            LENGTHI2 = LENGTHI * 2
            IF (MYPROC .EQ. 0) THEN
*              Broadcast eigenvalues and errors to all processors
               CALL DCOPY(LENGTHI,W ,1, RWORK( INDD ), 1)                 
               CALL DCOPY(LENGTHI,RWORK( IINDERR ),1,
     $                          RWORK( INDD+LENGTHI ), 1)                    
               CALL DGEBS2D( ICTXT, 'A', ' ', LENGTHI2, 1, 
     $              RWORK(INDD), LENGTHI2 )
            ELSE
               SRCROW = 0
               SRCCOL = 0
               CALL DGEBR2D( ICTXT, 'A', ' ', LENGTHI2, 1,
     $             RWORK(INDD), LENGTHI2, SRCROW, SRCCOL )
               CALL DCOPY( LENGTHI, RWORK(INDD), 1, W, 1)
               CALL DCOPY(LENGTHI,RWORK(INDD+LENGTHI),1,
     $                          RWORK( IINDERR ), 1)                   
            END IF
         ELSE
*           Enable point2point communication between collaborators

*           Find collaborators of MYPROC            
            IF( (NPROCS.GT.1).AND.(MYIL.GT.0) ) THEN
               CALL PMPCOL( MYPROC, NPROCS, IIL, NEEDIL, NEEDIU, 
     $                   IWORK(INDILU), IWORK(INDILU+NPROCS),
     $                   COLBRT, FRSTCL, LASTCL )
            ELSE
               COLBRT = .FALSE.
            ENDIF

            IF(COLBRT) THEN
*              If the processor collaborates with others,
*              communicate information. 
               DO 47 IPROC = FRSTCL, LASTCL
                  IF (MYPROC .EQ. IPROC) THEN
                     STARTI = DOL
                     IWORK(1) = STARTI
                     LENGTHI = MYIU - MYIL + 1
                     IWORK(2) = LENGTHI
                     
                     IF ((STARTI.GE.1) .AND. (LENGTHI.GE.1)) THEN
*                       Copy eigenvalues into communication buffer
                        CALL DCOPY(LENGTHI,W( STARTI ),1,
     $                              RWORK(INDD), 1)                    
*                       Copy uncertainties into communication buffer
                        CALL DCOPY(LENGTHI,
     $                          RWORK( IINDERR+STARTI-1 ),1,
     $                          RWORK(INDD+LENGTHI), 1)                    
                     ENDIF

                     DO 46 I = FRSTCL, LASTCL                      
                        IF(I.EQ.MYPROC) GOTO 46
                        DSTROW = I/ NPCOL
                        DSTCOL = MOD(I, NPCOL)
                        CALL IGESD2D( ICTXT, 2, 1, IWORK, 2, 
     $                             DSTROW, DSTCOL )
                        IF ((STARTI.GE.1) .AND. (LENGTHI.GE.1)) THEN
                           LENGTHI2 = 2*LENGTHI
*                          send buffer
                           CALL DGESD2D( ICTXT, LENGTHI2, 
     $                          1, RWORK(INDD), LENGTHI2,
     $                          DSTROW, DSTCOL )
                        END IF
  46                 CONTINUE
                  ELSE
                     SRCROW = IPROC / NPCOL
                     SRCCOL = MOD(IPROC, NPCOL)
                     CALL IGERV2D( ICTXT, 2, 1, IWORK, 2, 
     $                             SRCROW, SRCCOL )
                     RSTARTI = IWORK(1)
                     RLENGTHI = IWORK(2)
                     IF ((RSTARTI.GE.1 ) .AND. (RLENGTHI.GE.1 )) THEN
                        RLENGTHI2 = 2*RLENGTHI
                        CALL DGERV2D( ICTXT, RLENGTHI2, 1,
     $                      RWORK(INDE), RLENGTHI2,
     $                      SRCROW, SRCCOL )
*                       copy eigenvalues from communication buffer
                        CALL DCOPY( RLENGTHI,RWORK(INDE), 1,
     $                          W( RSTARTI ), 1)                    
*                       copy uncertainties (errors) from communication buffer
                        CALL DCOPY(RLENGTHI,RWORK(INDE+RLENGTHI),1,
     $                          RWORK( IINDERR+RSTARTI-1 ), 1)                    
                     END IF
                  END IF
  47           CONTINUE
            ENDIF
         ENDIF

*        Part 3. Compute representation tree and eigenvectors.
*                What follows is a loop in which the tree
*                is constructed in parallel from top to bottom,
*                on level at a time, until all eigenvectors
*                have been computed.
*      
 100     CONTINUE
         IF ( MYIL.GT.0 ) THEN
            CALL DSTEGR2B( JOBZ, N,  RWORK( INDD2 ),
     $                  RWORK( INDE2+OFFSET ), 
     $                  IM, W( 1 ), RWORK( INDRW ), N, N,
     $                  IWORK( 1 ), RWORK( INDRWORK ), SIZE1, 
     $                  IWORK( 2*N+1 ), SIZE2, DOL, 
     $                  DOU, NEEDIL, NEEDIU, INDWLC,
     $                  PIVMIN, SCALE, WL, WU,
     $                  VSTART, FINISH, 
     $                  MAXCLS, NDEPTH, PARITY, ZOFFSET, IINFO )
            IINDWLC = INDRWORK + INDWLC - 1
            IF(.NOT.FINISH) THEN
               IF((NEEDIL.LT.DOL).OR.(NEEDIU.GT.DOU)) THEN
                  CALL PMPCOL( MYPROC, NPROCS, IIL, NEEDIL, NEEDIU,
     $                 IWORK(INDILU), IWORK(INDILU+NPROCS),
     $                   COLBRT, FRSTCL, LASTCL )
               ELSE
                  COLBRT = .FALSE.
                  FRSTCL = MYPROC
                  LASTCL = MYPROC
               ENDIF
*
*              Check if this processor collaborates, i.e. 
*              communication is needed.
*
               IF(COLBRT) THEN
                  DO 147 IPROC = FRSTCL, LASTCL
                     IF (MYPROC .EQ. IPROC) THEN
                        STARTI = DOL
                        IWORK(1) = STARTI
                        IF(MYIL.GT.0) THEN
                           LENGTHI = MYIU - MYIL + 1
                        ELSE
                           LENGTHI = 0
                        ENDIF
                        IWORK(2) = LENGTHI
                        IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
*                          Copy eigenvalues into communication buffer
                           CALL DCOPY(LENGTHI,
     $                          RWORK( IINDWLC+STARTI-1 ),1,
     $                          RWORK(INDD), 1)                    
*                          Copy uncertainties into communication buffer
                           CALL DCOPY(LENGTHI,
     $                          RWORK( IINDERR+STARTI-1 ),1,
     $                          RWORK(INDD+LENGTHI), 1)                    
                        ENDIF
                      
                        DO 146 I = FRSTCL, LASTCL                      
                           IF(I.EQ.MYPROC) GOTO 146
                           DSTROW = I/ NPCOL
                           DSTCOL = MOD(I, NPCOL)
                           CALL IGESD2D( ICTXT, 2, 1, IWORK, 2, 
     $                             DSTROW, DSTCOL )
                           IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
                              LENGTHI2 = 2*LENGTHI
*                             send buffer
                              CALL DGESD2D( ICTXT, LENGTHI2, 
     $                             1, RWORK(INDD), LENGTHI2,
     $                             DSTROW, DSTCOL )
                           END IF
 146                    CONTINUE
                     ELSE
                        SRCROW = IPROC / NPCOL
                        SRCCOL = MOD(IPROC, NPCOL)
                        CALL IGERV2D( ICTXT, 2, 1, IWORK, 2, 
     $                             SRCROW, SRCCOL )
                        RSTARTI = IWORK(1)
                        RLENGTHI = IWORK(2)
                        IF ((RSTARTI.GE.1).AND.(RLENGTHI.GE.1)) THEN
                           RLENGTHI2 = 2*RLENGTHI
                           CALL DGERV2D( ICTXT,RLENGTHI2, 1,
     $                         RWORK(INDE),RLENGTHI2,
     $                         SRCROW, SRCCOL )
*                          copy eigenvalues from communication buffer
                           CALL DCOPY(RLENGTHI,RWORK(INDE), 1,
     $                          RWORK( IINDWLC+RSTARTI-1 ), 1)        
*                          copy uncertainties (errors) from communication buffer
                           CALL DCOPY(RLENGTHI,RWORK(INDE+RLENGTHI),
     $                          1,RWORK( IINDERR+RSTARTI-1 ), 1)            
                        END IF
                      END IF
 147              CONTINUE
               ENDIF
               GOTO 100         
            ENDIF
         ENDIF
         IF (IINFO .NE. 0) THEN
            CALL PXERBLA( ICTXT, 'DSTEGR2B', -IINFO )
            RETURN
         END IF
*
      ENDIF

*
***********************************************************************
*
*     MAIN PART ENDS HERE
*
***********************************************************************
*

***********************************************************************
*
*     ALLGATHER: EACH PROCESSOR SENDS ITS EIGENVALUES TO THE FIRST ONE,
*                THEN THE FIRST PROCESSOR BROADCASTS ALL EIGENVALUES
*
***********************************************************************

      DO 50 I = 2, NPROCS
         IF (MYPROC .EQ. (I - 1)) THEN
            DSTROW = 0
            DSTCOL = 0
            STARTI = MYIL - IIL + 1
            IWORK(1) = STARTI
            IF(MYIL.GT.0) THEN
               LENGTHI = MYIU - MYIL + 1
            ELSE
               LENGTHI = 0
            ENDIF
            IWORK(2) = LENGTHI
            CALL IGESD2D( ICTXT, 2, 1, IWORK, 2, 
     $                    DSTROW, DSTCOL )
            IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
               CALL DGESD2D( ICTXT, LENGTHI, 
     $              1, W( STARTI ), LENGTHI,
     $              DSTROW, DSTCOL )
            ENDIF
         ELSE IF (MYPROC .EQ. 0) THEN
            SRCROW = (I-1) / NPCOL
            SRCCOL = MOD(I-1, NPCOL)
            CALL IGERV2D( ICTXT, 2, 1, IWORK, 2, 
     $                    SRCROW, SRCCOL )
            STARTI = IWORK(1)
            LENGTHI = IWORK(2)
            IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
               CALL DGERV2D( ICTXT, LENGTHI, 1,
     $                 W( STARTI ), LENGTHI, SRCROW, SRCCOL )
            ENDIF
         ENDIF
   50 CONTINUE

*     Accumulate M from all processors
      M = IM
      CALL IGSUM2D( ICTXT, 'A', ' ', 1, 1, M, 1, -1, -1 )

*     Broadcast eigenvalues to all processors
      IF (MYPROC .EQ. 0) THEN
*        Send eigenvalues
         CALL DGEBS2D( ICTXT, 'A', ' ', M, 1, W, M )
      ELSE
         SRCROW = 0
         SRCCOL = 0
         CALL DGEBR2D( ICTXT, 'A', ' ', M, 1,
     $           W, M, SRCROW, SRCCOL )
      END IF
*
*     Sort the eigenvalues and keep permutation in IWORK to
*     sort the eigenvectors accordingly
*
      DO 160 I = 1, M
         IWORK( NPROCS+1+I ) = I
  160 CONTINUE
      CALL DLASRT2( 'I', M, W, IWORK( NPROCS+2 ), IINFO )
      IF (IINFO.NE.0) THEN
         CALL PXERBLA( ICTXT, 'DLASRT2', -IINFO )
         RETURN
      END IF

***********************************************************************
*
*     TRANSFORM Z FROM 1D WORKSPACE INTO 2D BLOCKCYCLIC STORAGE     
*
***********************************************************************
      IF ( WANTZ ) THEN
         DO 170 I = 1, M
            IWORK( M+NPROCS+1+IWORK( NPROCS+1+I ) ) = I
  170    CONTINUE
*        Store NVS in IWORK(1:NPROCS+1) for PZLAEVSWP
         IWORK( 1 ) = 0
         DO 180 I = 1, NPROCS
*           Find IL and IU for processor i-1
*           Has already been computed by PMPIM2 and stored
            IPIL = IWORK(INDILU+I-1)
            IPIU = IWORK(INDILU+NPROCS+I-1)
            IF (IPIL .EQ. 0) THEN
               IWORK( I + 1 ) = IWORK( I )
            ELSE
               IWORK( I + 1 ) = IWORK( I ) + IPIU - IPIL + 1
            ENDIF
  180    CONTINUE

         IF ( FIRST ) THEN
            CALL PZLAEVSWP(N, RWORK( INDRW ), N, Z, IZ, JZ, 
     $       DESCZ, IWORK( 1 ), IWORK( NPROCS+M+2 ), RWORK( INDRWORK ), 
     $       SIZE1 )
         ELSE
            CALL PZLAEVSWP(N, RWORK( INDRW + N ), N, Z, IZ, JZ, 
     $       DESCZ, IWORK( 1 ), IWORK( NPROCS+M+2 ), RWORK( INDRWORK ),
     $       SIZE1 )
         END IF
*
         NZ = M
*

***********************************************************************
*
*       Compute eigenvectors of A from eigenvectors of T
*
***********************************************************************
         IF( NZ.GT.0 ) THEN
           CALL PZUNMTR( 'L', UPLO, 'N', N, NZ, A, IA, JA, DESCA,
     $                    WORK( INDTAU ), Z, IZ, JZ, DESCZ,
     $                    WORK( INDWORK ), LLWORK, IINFO )
         END IF
         IF (IINFO.NE.0) THEN
            CALL PXERBLA( ICTXT, 'PZUNMTR', -IINFO )
            RETURN
         END IF
*

      END IF
*
      WORK( 1 ) = DCMPLX( LWOPT )
      RWORK( 1 ) = DBLE( LRWOPT )
      IWORK( 1 ) = LIWMIN

      RETURN
*
*     End of PZHEEVR
*
      END