1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
|
SUBROUTINE PZHEEVR( JOBZ, RANGE, UPLO, N, A, IA, JA,
$ DESCA, VL, VU, IL, IU, M, NZ, W, Z, IZ,
$ JZ, DESCZ,
$ WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,
$ INFO )
IMPLICIT NONE
*
* -- ScaLAPACK routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IA, IL, INFO, IU, IZ, JA, JZ, LIWORK, LRWORK,
$ LWORK, M, N, NZ
DOUBLE PRECISION VL, VU
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCZ( * ), IWORK( * )
DOUBLE PRECISION W( * ), RWORK( * )
COMPLEX*16 A( * ), WORK( * ), Z( * )
* ..
*
* Purpose
* =======
*
* PZHEEVR computes selected eigenvalues and, optionally, eigenvectors
* of a complex Hermitian matrix A distributed in 2D blockcyclic format
* by calling the recommended sequence of ScaLAPACK routines.
*
* First, the matrix A is reduced to real symmetric tridiagonal form.
* Then, the eigenproblem is solved using the parallel MRRR algorithm.
* Last, if eigenvectors have been computed, a backtransformation is done.
*
* Upon successful completion, each processor stores a copy of all computed
* eigenvalues in W. The eigenvector matrix Z is stored in
* 2D blockcyclic format distributed over all processors.
*
* For constructive feedback and comments, please contact cvoemel@lbl.gov
* C. Voemel
*
*
* Arguments
* =========
*
* JOBZ (global input) CHARACTER*1
* Specifies whether or not to compute the eigenvectors:
* = 'N': Compute eigenvalues only.
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (global input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the interval [VL,VU] will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
*
* UPLO (global input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns of the matrix A. N >= 0
*
* A (local input/workspace) 2D block cyclic COMPLEX*16 array,
* global dimension (N, N),
* local dimension ( LLD_A, LOCc(JA+N-1) )
* (see Notes below for more detailed explanation of 2d arrays)
*
* On entry, the symmetric matrix A. If UPLO = 'U', only the
* upper triangular part of A is used to define the elements of
* the symmetric matrix. If UPLO = 'L', only the lower
* triangular part of A is used to define the elements of the
* symmetric matrix.
*
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
* It should be set to 1 when operating on a full matrix.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
* It should be set to 1 when operating on a full matrix.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* (The ScaLAPACK descriptor length is DLEN_ = 9.)
* The array descriptor for the distributed matrix A.
* The descriptor stores details about the 2D block-cyclic
* storage, see the notes below.
* If DESCA is incorrect, PZHEEVR cannot work correctly.
* Also note the array alignment requirements specified below
*
* VL (global input) DOUBLE PRECISION
* If RANGE='V', the lower bound of the interval to be searched
* for eigenvalues. Not referenced if RANGE = 'A' or 'I'.
*
* VU (global input) DOUBLE PRECISION
* If RANGE='V', the upper bound of the interval to be searched
* for eigenvalues. Not referenced if RANGE = 'A' or 'I'.
*
* IL (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* smallest eigenvalue to be returned. IL >= 1.
* Not referenced if RANGE = 'A'.
*
* IU (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* largest eigenvalue to be returned. min(IL,N) <= IU <= N.
* Not referenced if RANGE = 'A'.
*
* M (global output) INTEGER
* Total number of eigenvalues found. 0 <= M <= N.
*
* NZ (global output) INTEGER
* Total number of eigenvectors computed. 0 <= NZ <= M.
* The number of columns of Z that are filled.
* If JOBZ .NE. 'V', NZ is not referenced.
* If JOBZ .EQ. 'V', NZ = M
*
* W (global output) DOUBLE PRECISION array, dimension (N)
* On normal exit, the first M entries contain the selected
* eigenvalues in ascending order.
*
* Z (local output) COMPLEX*16 array,
* global dimension (N, N),
* local dimension ( LLD_Z, LOCc(JZ+N-1) )
* If JOBZ = 'V', then on normal exit the first M columns of Z
* contain the orthonormal eigenvectors of the matrix
* corresponding to the selected eigenvalues.
* If JOBZ = 'N', then Z is not referenced.
*
* IZ (global input) INTEGER
* Z's global row index, which points to the beginning of the
* submatrix which is to be operated on.
* It should be set to 1 when operating on a full matrix.
*
* JZ (global input) INTEGER
* Z's global column index, which points to the beginning of
* the submatrix which is to be operated on.
* It should be set to 1 when operating on a full matrix.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
* DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
* WORK (local workspace/output) COMPLEX*16 array,
* dimension (LWORK)
* WORK(1) returns workspace adequate workspace to allow
* optimal performance.
*
* LWORK (local input) INTEGER
* Size of WORK array, must be at least 3.
* If only eigenvalues are requested:
* LWORK >= N + MAX( NB * ( NP00 + 1 ), NB * 3 )
* If eigenvectors are requested:
* LWORK >= N + ( NP00 + MQ00 + NB ) * NB
* For definitions of NP00 & MQ00, see LRWORK.
*
* For optimal performance, greater workspace is needed, i.e.
* LWORK >= MAX( LWORK, NHETRD_LWORK )
* Where LWORK is as defined above, and
* NHETRD_LWORK = N + 2*( ANB+1 )*( 4*NPS+2 ) +
* ( NPS + 1 ) * NPS
*
* ICTXT = DESCA( CTXT_ )
* ANB = PJLAENV( ICTXT, 3, 'PZHETTRD', 'L', 0, 0, 0, 0 )
* SQNPC = SQRT( DBLE( NPROW * NPCOL ) )
* NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the
* optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
* NOTE THAT FOR OPTIMAL PERFORMANCE, LWOPT IS RETURNED
* (THE OPTIMUM WORKSPACE) RATHER THAN THE MINIMUM NECESSARY
* WORKSPACE LWMIN WHEN A WORKSPACE QUERY IS ISSUED.
* FOR VERY SMALL MATRICES, LWOPT >> LWMIN.
*
* RWORK (local workspace/output) DOUBLE PRECISION array,
* dimension (LRWORK)
* On return, RWORK(1) contains the optimal amount of
* workspace required for efficient execution.
* if JOBZ='N' RWORK(1) = optimal amount of workspace
* required to compute the eigenvalues.
* if JOBZ='V' RWORK(1) = optimal amount of workspace
* required to compute eigenvalues and eigenvectors.
*
* LRWORK (local input) INTEGER
* Size of RWORK, must be at least 3.
* See below for definitions of variables used to define LRWORK.
* If no eigenvectors are requested (JOBZ = 'N') then
* LRWORK >= 2 + 5 * N + MAX( 12 * N, NB * ( NP00 + 1 ) )
* If eigenvectors are requested (JOBZ = 'V' ) then
* the amount of workspace required is:
* LRWORK >= 2 + 5 * N + MAX( 18*N, NP00 * MQ00 + 2 * NB * NB ) +
* (2 + ICEIL( NEIG, NPROW*NPCOL))*N
*
* Variable definitions:
* NEIG = number of eigenvectors requested
* NB = DESCA( MB_ ) = DESCA( NB_ ) =
* DESCZ( MB_ ) = DESCZ( NB_ )
* NN = MAX( N, NB, 2 )
* DESCA( RSRC_ ) = DESCA( NB_ ) = DESCZ( RSRC_ ) =
* DESCZ( CSRC_ ) = 0
* NP00 = NUMROC( NN, NB, 0, 0, NPROW )
* MQ00 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
* ICEIL( X, Y ) is a ScaLAPACK function returning
* ceiling(X/Y)
*
* If LRWORK = -1, then LRWORK is global input and a workspace
* query is assumed; the routine only calculates the size
* required for optimal performance for all work arrays. Each of
* these values is returned in the first entry of the
* corresponding work arrays, and no error message is issued by
* PXERBLA.
*
* IWORK (local workspace) INTEGER array
* On return, IWORK(1) contains the amount of integer workspace
* required.
*
* LIWORK (local input) INTEGER
* size of IWORK
*
* Let NNP = MAX( N, NPROW*NPCOL + 1, 4 ). Then:
* LIWORK >= 12*NNP + 2*N when the eigenvectors are desired
* LIWORK >= 10*NNP + 2*N when only the eigenvalues have to be computed
*
* If LIWORK = -1, then LIWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* PZHEEVR assumes IEEE 754 standard compliant arithmetic.
*
* Alignment requirements
* ======================
*
* The distributed submatrices A(IA:*, JA:*) and Z(IZ:IZ+M-1,JZ:JZ+N-1)
* must satisfy the following alignment properties:
*
* 1.Identical (quadratic) dimension:
* DESCA(M_) = DESCZ(M_) = DESCA(N_) = DESCZ(N_)
* 2.Quadratic conformal blocking:
* DESCA(MB_) = DESCA(NB_) = DESCZ(MB_) = DESCZ(NB_)
* DESCA(RSRC_) = DESCZ(RSRC_)
* 3.MOD( IA-1, MB_A ) = MOD( IZ-1, MB_Z ) = 0
* 4.IAROW = IZROW
*
*
* .. Parameters ..
INTEGER CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_
PARAMETER ( CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, COLBRT, DOBCST, FINISH, FIRST, INDEIG,
$ LOWER, LQUERY, VALEIG, VSTART, WANTZ
INTEGER ANB, DOL, DOU, DSTCOL, DSTROW, EIGCNT, FRSTCL,
$ I, IAROW, ICTXT, IIL, IINDERR, IINDWLC, IINFO,
$ IIU, IM, INDD, INDD2, INDE, INDE2, INDERR,
$ INDILU, INDRTAU, INDRW, INDRWORK, INDTAU,
$ INDWLC, INDWORK, IPIL, IPIU, IPROC, IZROW,
$ LASTCL, LENGTHI, LENGTHI2, LIWMIN, LLRWORK,
$ LLWORK, LRWMIN, LRWOPT, LWMIN, LWOPT, MAXCLS,
$ MQ00, MYCOL, MYIL, MYIU, MYPROC, MYROW, MZ, NB,
$ NDEPTH, NEEDIL, NEEDIU, NHETRD_LWOPT, NNP,
$ NP00, NPCOL, NPROCS, NPROW, NPS, NSPLIT,
$ OFFSET, PARITY, RLENGTHI, RLENGTHI2, RSTARTI,
$ SIZE1, SIZE2, SQNPC, SRCCOL, SRCROW, STARTI,
$ ZOFFSET
DOUBLE PRECISION PIVMIN, SAFMIN, SCALE, VLL, VUU, WL,
$ WU
*
* .. Local Arrays ..
INTEGER IDUM1( 4 ), IDUM2( 4 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, INDXG2P, NUMROC, PJLAENV
DOUBLE PRECISION PDLAMCH
EXTERNAL ICEIL, INDXG2P, LSAME, NUMROC, PDLAMCH,
$ PJLAENV
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DCOPY, DGEBR2D,
$ DGEBS2D, DGERV2D, DGESD2D, DLARRC, DLASRT2,
$ DSTEGR2A, DSTEGR2B, DSTEGR2, IGEBR2D,
$ IGEBS2D, IGERV2D, IGESD2D, IGSUM2D, PCHK1MAT,
$ PCHK2MAT, PDLARED1D, PXERBLA, PZELGET,
$ PZHENTRD, PZLAEVSWP, PZUNMTR
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, ICHAR, INT, MAX, MIN, MOD,
$ SQRT
* ..
* .. Executable Statements ..
*
INFO = 0
***********************************************************************
*
* Decode character arguments to find out what the code should do
*
***********************************************************************
WANTZ = LSAME( JOBZ, 'V' )
LOWER = LSAME( UPLO, 'L' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
***********************************************************************
*
* GET MACHINE PARAMETERS
*
***********************************************************************
ICTXT = DESCA( CTXT_ )
SAFMIN = PDLAMCH( ICTXT, 'Safe minimum' )
***********************************************************************
*
* Set up pointers into the (complex) WORK array
*
***********************************************************************
INDTAU = 1
INDWORK = INDTAU + N
LLWORK = LWORK - INDWORK + 1
***********************************************************************
*
* Set up pointers into the RWORK array
*
***********************************************************************
INDRTAU = 1
INDD = INDRTAU + N
INDE = INDD + N + 1
INDD2 = INDE + N + 1
INDE2 = INDD2 + N
INDRWORK = INDE2 + N
LLRWORK = LRWORK - INDRWORK + 1
***********************************************************************
*
* BLACS PROCESSOR GRID SETUP
*
***********************************************************************
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
NPROCS = NPROW * NPCOL
MYPROC = MYROW * NPCOL + MYCOL
IF( NPROW.EQ.-1 ) THEN
INFO = -( 800+CTXT_ )
ELSE IF( WANTZ ) THEN
IF( ICTXT.NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 2100+CTXT_ )
END IF
END IF
***********************************************************************
*
* COMPUTE REAL WORKSPACE
*
***********************************************************************
IF ( ALLEIG ) THEN
MZ = N
ELSE IF ( INDEIG ) THEN
MZ = IU - IL + 1
ELSE
* Take upper bound for VALEIG case
MZ = N
END IF
*
NB = DESCA( NB_ )
NP00 = NUMROC( N, NB, 0, 0, NPROW )
MQ00 = NUMROC( MZ, NB, 0, 0, NPCOL )
IF ( WANTZ ) THEN
INDRW = INDRWORK + MAX(18*N, NP00*MQ00 + 2*NB*NB)
LRWMIN = INDRW - 1 + (ICEIL(MZ, NPROCS) + 2)*N
LWMIN = N + MAX((NP00 + MQ00 + NB) * NB, 3 * NB)
ELSE
INDRW = INDRWORK + 12*N
LRWMIN = INDRW - 1
LWMIN = N + MAX( NB*( NP00 + 1 ), 3 * NB )
END IF
* The code that validates the input requires 3 workspace entries
LRWMIN = MAX(3, LRWMIN)
LRWOPT = LRWMIN
LWMIN = MAX(3, LWMIN)
LWOPT = LWMIN
*
ANB = PJLAENV( ICTXT, 3, 'PZHETTRD', 'L', 0, 0, 0, 0 )
SQNPC = INT( SQRT( DBLE( NPROCS ) ) )
NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
NHETRD_LWOPT = 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS+4 )*NPS
LWOPT = MAX( LWOPT, N+NHETRD_LWOPT )
*
SIZE1 = INDRW - INDRWORK
***********************************************************************
*
* COMPUTE INTEGER WORKSPACE
*
***********************************************************************
NNP = MAX( N, NPROCS+1, 4 )
IF ( WANTZ ) THEN
LIWMIN = 12*NNP + 2*N
ELSE
LIWMIN = 10*NNP + 2*N
END IF
***********************************************************************
*
* Set up pointers into the IWORK array
*
***********************************************************************
* Pointer to eigenpair distribution over processors
INDILU = LIWMIN - 2*NPROCS + 1
SIZE2 = INDILU - 2*N
***********************************************************************
*
* Test the input arguments.
*
***********************************************************************
IF( INFO.EQ.0 ) THEN
CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, INFO )
IF( WANTZ )
$ CALL CHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 21, INFO )
*
IF( INFO.EQ.0 ) THEN
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -3
ELSE IF( MOD( IA-1, DESCA( MB_ ) ).NE.0 ) THEN
INFO = -6
ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
INFO = -10
ELSE IF( INDEIG .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
$ THEN
INFO = -11
ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ))
$ THEN
INFO = -12
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -21
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -23
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -25
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 800+NB_ )
END IF
IF( WANTZ ) THEN
IAROW = INDXG2P( 1, DESCA( NB_ ), MYROW,
$ DESCA( RSRC_ ), NPROW )
IZROW = INDXG2P( 1, DESCA( NB_ ), MYROW,
$ DESCZ( RSRC_ ), NPROW )
IF( IAROW.NE.IZROW ) THEN
INFO = -19
ELSE IF( MOD( IA-1, DESCA( MB_ ) ).NE.
$ MOD( IZ-1, DESCZ( MB_ ) ) ) THEN
INFO = -19
ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
INFO = -( 2100+M_ )
ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
INFO = -( 2100+N_ )
ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 2100+MB_ )
ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 2100+NB_ )
ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
INFO = -( 2100+RSRC_ )
ELSE IF( DESCA( CSRC_ ).NE.DESCZ( CSRC_ ) ) THEN
INFO = -( 2100+CSRC_ )
ELSE IF( ICTXT.NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 2100+CTXT_ )
END IF
END IF
END IF
IDUM2( 1 ) = 1
IF( LOWER ) THEN
IDUM1( 2 ) = ICHAR( 'L' )
ELSE
IDUM1( 2 ) = ICHAR( 'U' )
END IF
IDUM2( 2 ) = 2
IF( ALLEIG ) THEN
IDUM1( 3 ) = ICHAR( 'A' )
ELSE IF( INDEIG ) THEN
IDUM1( 3 ) = ICHAR( 'I' )
ELSE
IDUM1( 3 ) = ICHAR( 'V' )
END IF
IDUM2( 3 ) = 3
IF( LQUERY ) THEN
IDUM1( 4 ) = -1
ELSE
IDUM1( 4 ) = 1
END IF
IDUM2( 4 ) = 4
IF( WANTZ ) THEN
IDUM1( 1 ) = ICHAR( 'V' )
CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 8, N, 4, N, 4,IZ,
$ JZ, DESCZ, 21, 4, IDUM1, IDUM2, INFO )
ELSE
IDUM1( 1 ) = ICHAR( 'N' )
CALL PCHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, 4, IDUM1,
$ IDUM2, INFO )
END IF
WORK( 1 ) = DCMPLX( LWOPT )
RWORK( 1 ) = DBLE( LRWOPT )
IWORK( 1 ) = LIWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZHEEVR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
***********************************************************************
*
* Quick return if possible
*
***********************************************************************
IF( N.EQ.0 ) THEN
IF( WANTZ ) THEN
NZ = 0
END IF
M = 0
WORK( 1 ) = DCMPLX( LWOPT )
RWORK( 1 ) = DBLE( LRWOPT )
IWORK( 1 ) = LIWMIN
RETURN
END IF
IF( VALEIG ) THEN
VLL = VL
VUU = VU
ELSE
VLL = ZERO
VUU = ZERO
END IF
*
* No scaling done here, leave this to MRRR kernel.
* Scale tridiagonal rather than full matrix.
*
***********************************************************************
*
* REDUCE MATRIX TO REAL SYMMETRIC TRIDIAGONAL FORM.
*
***********************************************************************
CALL PZHENTRD( UPLO, N, A, IA, JA, DESCA, RWORK( INDD ),
$ RWORK( INDE ), WORK( INDTAU ), WORK( INDWORK ),
$ LLWORK, RWORK( INDRWORK ), LLRWORK,IINFO )
IF (IINFO .NE. 0) THEN
CALL PXERBLA( ICTXT, 'PZHENTRD', -IINFO )
RETURN
END IF
***********************************************************************
*
* DISTRIBUTE TRIDIAGONAL TO ALL PROCESSORS
*
***********************************************************************
OFFSET = 0
IF( IA.EQ.1 .AND. JA.EQ.1 .AND.
$ DESCA( RSRC_ ).EQ.0 .AND. DESCA( CSRC_ ).EQ.0 )
$ THEN
CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDD ),
$ RWORK( INDD2 ), RWORK( INDRWORK ), LLRWORK )
*
CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDE ),
$ RWORK( INDE2 ), RWORK( INDRWORK ), LLRWORK )
IF( .NOT.LOWER )
$ OFFSET = 1
ELSE
DO 10 I = 1, N
CALL PZELGET( 'A', ' ', WORK( INDWORK ), A,
$ I+IA-1, I+JA-1, DESCA )
RWORK( INDD2+I-1 ) = DBLE( WORK( INDWORK ) )
10 CONTINUE
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 I = 1, N - 1
CALL PZELGET( 'A', ' ', WORK( INDWORK ), A,
$ I+IA-1, I+JA, DESCA )
RWORK( INDE2+I-1 ) = DBLE( WORK( INDWORK ) )
20 CONTINUE
ELSE
DO 30 I = 1, N - 1
CALL PZELGET( 'A', ' ', WORK( INDWORK ), A,
$ I+IA, I+JA-1, DESCA )
RWORK( INDE2+I-1 ) = DBLE( WORK( INDWORK ) )
30 CONTINUE
END IF
END IF
***********************************************************************
*
* SET IIL, IIU
*
***********************************************************************
IF ( ALLEIG ) THEN
IIL = 1
IIU = N
ELSE IF ( INDEIG ) THEN
IIL = IL
IIU = IU
ELSE IF ( VALEIG ) THEN
CALL DLARRC('T', N, VLL, VUU, RWORK( INDD2 ),
$ RWORK( INDE2 + OFFSET ), SAFMIN, EIGCNT, IIL, IIU, INFO)
* Refine upper bound N that was taken
MZ = EIGCNT
IIL = IIL + 1
ENDIF
IF(MZ.EQ.0) THEN
M = 0
IF( WANTZ ) THEN
NZ = 0
END IF
WORK( 1 ) = DBLE( LWOPT )
IWORK( 1 ) = LIWMIN
RETURN
END IF
MYIL = 0
MYIU = 0
M = 0
IM = 0
***********************************************************************
*
* COMPUTE WORK ASSIGNMENTS
*
***********************************************************************
*
* Each processor computes the work assignments for all processors
*
CALL PMPIM2( IIL, IIU, NPROCS,
$ IWORK(INDILU), IWORK(INDILU+NPROCS) )
*
* Find local work assignment
*
MYIL = IWORK(INDILU+MYPROC)
MYIU = IWORK(INDILU+NPROCS+MYPROC)
ZOFFSET = MAX(0, MYIL - IIL - 1)
FIRST = ( MYIL .EQ. IIL )
***********************************************************************
*
* CALLS TO MRRR KERNEL
*
***********************************************************************
IF(.NOT.WANTZ) THEN
*
* Compute eigenvalues only.
*
IINFO = 0
IF ( MYIL.GT.0 ) THEN
DOL = 1
DOU = MYIU - MYIL + 1
CALL DSTEGR2( JOBZ, 'I', N, RWORK( INDD2 ),
$ RWORK( INDE2+OFFSET ), VLL, VUU, MYIL, MYIU,
$ IM, W( 1 ), RWORK( INDRW ), N,
$ MYIU - MYIL + 1,
$ IWORK( 1 ), RWORK( INDRWORK ), SIZE1,
$ IWORK( 2*N+1 ), SIZE2,
$ DOL, DOU, ZOFFSET, IINFO )
* DSTEGR2 zeroes out the entire W array, so we can't just give
* it the part of W we need. So here we copy the W entries into
* their correct location
DO 49 I = 1, IM
W( MYIL-IIL+I ) = W( I )
49 CONTINUE
* W( MYIL ) is at W( MYIL - IIL + 1 )
* W( X ) is at W(X - IIL + 1 )
END IF
IF (IINFO .NE. 0) THEN
CALL PXERBLA( ICTXT, 'DSTEGR2', -IINFO )
RETURN
END IF
ELSEIF ( WANTZ .AND. NPROCS.EQ.1 ) THEN
*
* Compute eigenvalues and -vectors, but only on one processor
*
IINFO = 0
IF ( MYIL.GT.0 ) THEN
DOL = MYIL - IIL + 1
DOU = MYIU - IIL + 1
CALL DSTEGR2( JOBZ, 'I', N, RWORK( INDD2 ),
$ RWORK( INDE2+OFFSET ), VLL, VUU, IIL, IIU,
$ IM, W( 1 ), RWORK( INDRW ), N,
$ N,
$ IWORK( 1 ), RWORK( INDRWORK ), SIZE1,
$ IWORK( 2*N+1 ), SIZE2, DOL, DOU,
$ ZOFFSET, IINFO )
ENDIF
IF (IINFO .NE. 0) THEN
CALL PXERBLA( ICTXT, 'DSTEGR2', -IINFO )
RETURN
END IF
ELSEIF ( WANTZ ) THEN
* Compute representations in parallel.
* Share eigenvalue computation for root between all processors
* Then compute the eigenvectors.
IINFO = 0
* Part 1. compute root representations and root eigenvalues
IF ( MYIL.GT.0 ) THEN
DOL = MYIL - IIL + 1
DOU = MYIU - IIL + 1
CALL DSTEGR2A( JOBZ, 'I', N, RWORK( INDD2 ),
$ RWORK( INDE2+OFFSET ), VLL, VUU, IIL, IIU,
$ IM, W( 1 ), RWORK( INDRW ), N,
$ N, RWORK( INDRWORK ), SIZE1,
$ IWORK( 2*N+1 ), SIZE2, DOL,
$ DOU, NEEDIL, NEEDIU,
$ INDERR, NSPLIT, PIVMIN, SCALE, WL, WU,
$ IINFO )
ENDIF
IF (IINFO .NE. 0) THEN
CALL PXERBLA( ICTXT, 'DSTEGR2A', -IINFO )
RETURN
END IF
*
* The second part of parallel MRRR, the representation tree
* construction begins. Upon successful completion, the
* eigenvectors have been computed. This is indicated by
* the flag FINISH.
*
VSTART = .TRUE.
FINISH = (MYIL.LE.0)
C Part 2. Share eigenvalues and uncertainties between all processors
IINDERR = INDRWORK + INDERR - 1
*
*
* There are currently two ways to communicate eigenvalue information
* using the BLACS.
* 1.) BROADCAST
* 2.) POINT2POINT between collaborators (those processors working
* jointly on a cluster.
* For efficiency, BROADCAST has been disabled.
* At a later stage, other more efficient communication algorithms
* might be implemented, e. g. group or tree-based communication.
DOBCST = .FALSE.
IF(DOBCST) THEN
* First gather everything on the first processor.
* Then use BROADCAST-based communication
DO 45 I = 2, NPROCS
IF (MYPROC .EQ. (I - 1)) THEN
DSTROW = 0
DSTCOL = 0
STARTI = DOL
IWORK(1) = STARTI
IF(MYIL.GT.0) THEN
LENGTHI = MYIU - MYIL + 1
ELSE
LENGTHI = 0
ENDIF
IWORK(2) = LENGTHI
CALL IGESD2D( ICTXT, 2, 1, IWORK, 2,
$ DSTROW, DSTCOL )
IF (( STARTI.GE.1 ) .AND. ( LENGTHI.GE.1 )) THEN
LENGTHI2 = 2*LENGTHI
* Copy eigenvalues into communication buffer
CALL DCOPY(LENGTHI,W( STARTI ),1,
$ RWORK( INDD ), 1)
* Copy uncertainties into communication buffer
CALL DCOPY(LENGTHI,RWORK(IINDERR+STARTI-1),1,
$ RWORK( INDD+LENGTHI ), 1)
* send buffer
CALL DGESD2D( ICTXT, LENGTHI2,
$ 1, RWORK( INDD ), LENGTHI2,
$ DSTROW, DSTCOL )
END IF
ELSE IF (MYPROC .EQ. 0) THEN
SRCROW = (I-1) / NPCOL
SRCCOL = MOD(I-1, NPCOL)
CALL IGERV2D( ICTXT, 2, 1, IWORK, 2,
$ SRCROW, SRCCOL )
STARTI = IWORK(1)
LENGTHI = IWORK(2)
IF (( STARTI.GE.1 ) .AND. ( LENGTHI.GE.1 )) THEN
LENGTHI2 = 2*LENGTHI
* receive buffer
CALL DGERV2D( ICTXT, LENGTHI2, 1,
$ RWORK(INDD), LENGTHI2, SRCROW, SRCCOL )
* copy eigenvalues from communication buffer
CALL DCOPY( LENGTHI, RWORK(INDD), 1,
$ W( STARTI ), 1)
* copy uncertainties (errors) from communication buffer
CALL DCOPY(LENGTHI,RWORK(INDD+LENGTHI),1,
$ RWORK( IINDERR+STARTI-1 ), 1)
END IF
END IF
45 CONTINUE
LENGTHI = IIU - IIL + 1
LENGTHI2 = LENGTHI * 2
IF (MYPROC .EQ. 0) THEN
* Broadcast eigenvalues and errors to all processors
CALL DCOPY(LENGTHI,W ,1, RWORK( INDD ), 1)
CALL DCOPY(LENGTHI,RWORK( IINDERR ),1,
$ RWORK( INDD+LENGTHI ), 1)
CALL DGEBS2D( ICTXT, 'A', ' ', LENGTHI2, 1,
$ RWORK(INDD), LENGTHI2 )
ELSE
SRCROW = 0
SRCCOL = 0
CALL DGEBR2D( ICTXT, 'A', ' ', LENGTHI2, 1,
$ RWORK(INDD), LENGTHI2, SRCROW, SRCCOL )
CALL DCOPY( LENGTHI, RWORK(INDD), 1, W, 1)
CALL DCOPY(LENGTHI,RWORK(INDD+LENGTHI),1,
$ RWORK( IINDERR ), 1)
END IF
ELSE
* Enable point2point communication between collaborators
* Find collaborators of MYPROC
IF( (NPROCS.GT.1).AND.(MYIL.GT.0) ) THEN
CALL PMPCOL( MYPROC, NPROCS, IIL, NEEDIL, NEEDIU,
$ IWORK(INDILU), IWORK(INDILU+NPROCS),
$ COLBRT, FRSTCL, LASTCL )
ELSE
COLBRT = .FALSE.
ENDIF
IF(COLBRT) THEN
* If the processor collaborates with others,
* communicate information.
DO 47 IPROC = FRSTCL, LASTCL
IF (MYPROC .EQ. IPROC) THEN
STARTI = DOL
IWORK(1) = STARTI
LENGTHI = MYIU - MYIL + 1
IWORK(2) = LENGTHI
IF ((STARTI.GE.1) .AND. (LENGTHI.GE.1)) THEN
* Copy eigenvalues into communication buffer
CALL DCOPY(LENGTHI,W( STARTI ),1,
$ RWORK(INDD), 1)
* Copy uncertainties into communication buffer
CALL DCOPY(LENGTHI,
$ RWORK( IINDERR+STARTI-1 ),1,
$ RWORK(INDD+LENGTHI), 1)
ENDIF
DO 46 I = FRSTCL, LASTCL
IF(I.EQ.MYPROC) GOTO 46
DSTROW = I/ NPCOL
DSTCOL = MOD(I, NPCOL)
CALL IGESD2D( ICTXT, 2, 1, IWORK, 2,
$ DSTROW, DSTCOL )
IF ((STARTI.GE.1) .AND. (LENGTHI.GE.1)) THEN
LENGTHI2 = 2*LENGTHI
* send buffer
CALL DGESD2D( ICTXT, LENGTHI2,
$ 1, RWORK(INDD), LENGTHI2,
$ DSTROW, DSTCOL )
END IF
46 CONTINUE
ELSE
SRCROW = IPROC / NPCOL
SRCCOL = MOD(IPROC, NPCOL)
CALL IGERV2D( ICTXT, 2, 1, IWORK, 2,
$ SRCROW, SRCCOL )
RSTARTI = IWORK(1)
RLENGTHI = IWORK(2)
IF ((RSTARTI.GE.1 ) .AND. (RLENGTHI.GE.1 )) THEN
RLENGTHI2 = 2*RLENGTHI
CALL DGERV2D( ICTXT, RLENGTHI2, 1,
$ RWORK(INDE), RLENGTHI2,
$ SRCROW, SRCCOL )
* copy eigenvalues from communication buffer
CALL DCOPY( RLENGTHI,RWORK(INDE), 1,
$ W( RSTARTI ), 1)
* copy uncertainties (errors) from communication buffer
CALL DCOPY(RLENGTHI,RWORK(INDE+RLENGTHI),1,
$ RWORK( IINDERR+RSTARTI-1 ), 1)
END IF
END IF
47 CONTINUE
ENDIF
ENDIF
* Part 3. Compute representation tree and eigenvectors.
* What follows is a loop in which the tree
* is constructed in parallel from top to bottom,
* on level at a time, until all eigenvectors
* have been computed.
*
100 CONTINUE
IF ( MYIL.GT.0 ) THEN
CALL DSTEGR2B( JOBZ, N, RWORK( INDD2 ),
$ RWORK( INDE2+OFFSET ),
$ IM, W( 1 ), RWORK( INDRW ), N, N,
$ IWORK( 1 ), RWORK( INDRWORK ), SIZE1,
$ IWORK( 2*N+1 ), SIZE2, DOL,
$ DOU, NEEDIL, NEEDIU, INDWLC,
$ PIVMIN, SCALE, WL, WU,
$ VSTART, FINISH,
$ MAXCLS, NDEPTH, PARITY, ZOFFSET, IINFO )
IINDWLC = INDRWORK + INDWLC - 1
IF(.NOT.FINISH) THEN
IF((NEEDIL.LT.DOL).OR.(NEEDIU.GT.DOU)) THEN
CALL PMPCOL( MYPROC, NPROCS, IIL, NEEDIL, NEEDIU,
$ IWORK(INDILU), IWORK(INDILU+NPROCS),
$ COLBRT, FRSTCL, LASTCL )
ELSE
COLBRT = .FALSE.
FRSTCL = MYPROC
LASTCL = MYPROC
ENDIF
*
* Check if this processor collaborates, i.e.
* communication is needed.
*
IF(COLBRT) THEN
DO 147 IPROC = FRSTCL, LASTCL
IF (MYPROC .EQ. IPROC) THEN
STARTI = DOL
IWORK(1) = STARTI
IF(MYIL.GT.0) THEN
LENGTHI = MYIU - MYIL + 1
ELSE
LENGTHI = 0
ENDIF
IWORK(2) = LENGTHI
IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
* Copy eigenvalues into communication buffer
CALL DCOPY(LENGTHI,
$ RWORK( IINDWLC+STARTI-1 ),1,
$ RWORK(INDD), 1)
* Copy uncertainties into communication buffer
CALL DCOPY(LENGTHI,
$ RWORK( IINDERR+STARTI-1 ),1,
$ RWORK(INDD+LENGTHI), 1)
ENDIF
DO 146 I = FRSTCL, LASTCL
IF(I.EQ.MYPROC) GOTO 146
DSTROW = I/ NPCOL
DSTCOL = MOD(I, NPCOL)
CALL IGESD2D( ICTXT, 2, 1, IWORK, 2,
$ DSTROW, DSTCOL )
IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
LENGTHI2 = 2*LENGTHI
* send buffer
CALL DGESD2D( ICTXT, LENGTHI2,
$ 1, RWORK(INDD), LENGTHI2,
$ DSTROW, DSTCOL )
END IF
146 CONTINUE
ELSE
SRCROW = IPROC / NPCOL
SRCCOL = MOD(IPROC, NPCOL)
CALL IGERV2D( ICTXT, 2, 1, IWORK, 2,
$ SRCROW, SRCCOL )
RSTARTI = IWORK(1)
RLENGTHI = IWORK(2)
IF ((RSTARTI.GE.1).AND.(RLENGTHI.GE.1)) THEN
RLENGTHI2 = 2*RLENGTHI
CALL DGERV2D( ICTXT,RLENGTHI2, 1,
$ RWORK(INDE),RLENGTHI2,
$ SRCROW, SRCCOL )
* copy eigenvalues from communication buffer
CALL DCOPY(RLENGTHI,RWORK(INDE), 1,
$ RWORK( IINDWLC+RSTARTI-1 ), 1)
* copy uncertainties (errors) from communication buffer
CALL DCOPY(RLENGTHI,RWORK(INDE+RLENGTHI),
$ 1,RWORK( IINDERR+RSTARTI-1 ), 1)
END IF
END IF
147 CONTINUE
ENDIF
GOTO 100
ENDIF
ENDIF
IF (IINFO .NE. 0) THEN
CALL PXERBLA( ICTXT, 'DSTEGR2B', -IINFO )
RETURN
END IF
*
ENDIF
*
***********************************************************************
*
* MAIN PART ENDS HERE
*
***********************************************************************
*
***********************************************************************
*
* ALLGATHER: EACH PROCESSOR SENDS ITS EIGENVALUES TO THE FIRST ONE,
* THEN THE FIRST PROCESSOR BROADCASTS ALL EIGENVALUES
*
***********************************************************************
DO 50 I = 2, NPROCS
IF (MYPROC .EQ. (I - 1)) THEN
DSTROW = 0
DSTCOL = 0
STARTI = MYIL - IIL + 1
IWORK(1) = STARTI
IF(MYIL.GT.0) THEN
LENGTHI = MYIU - MYIL + 1
ELSE
LENGTHI = 0
ENDIF
IWORK(2) = LENGTHI
CALL IGESD2D( ICTXT, 2, 1, IWORK, 2,
$ DSTROW, DSTCOL )
IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
CALL DGESD2D( ICTXT, LENGTHI,
$ 1, W( STARTI ), LENGTHI,
$ DSTROW, DSTCOL )
ENDIF
ELSE IF (MYPROC .EQ. 0) THEN
SRCROW = (I-1) / NPCOL
SRCCOL = MOD(I-1, NPCOL)
CALL IGERV2D( ICTXT, 2, 1, IWORK, 2,
$ SRCROW, SRCCOL )
STARTI = IWORK(1)
LENGTHI = IWORK(2)
IF ((STARTI.GE.1).AND.(LENGTHI.GE.1)) THEN
CALL DGERV2D( ICTXT, LENGTHI, 1,
$ W( STARTI ), LENGTHI, SRCROW, SRCCOL )
ENDIF
ENDIF
50 CONTINUE
* Accumulate M from all processors
M = IM
CALL IGSUM2D( ICTXT, 'A', ' ', 1, 1, M, 1, -1, -1 )
* Broadcast eigenvalues to all processors
IF (MYPROC .EQ. 0) THEN
* Send eigenvalues
CALL DGEBS2D( ICTXT, 'A', ' ', M, 1, W, M )
ELSE
SRCROW = 0
SRCCOL = 0
CALL DGEBR2D( ICTXT, 'A', ' ', M, 1,
$ W, M, SRCROW, SRCCOL )
END IF
*
* Sort the eigenvalues and keep permutation in IWORK to
* sort the eigenvectors accordingly
*
DO 160 I = 1, M
IWORK( NPROCS+1+I ) = I
160 CONTINUE
CALL DLASRT2( 'I', M, W, IWORK( NPROCS+2 ), IINFO )
IF (IINFO.NE.0) THEN
CALL PXERBLA( ICTXT, 'DLASRT2', -IINFO )
RETURN
END IF
***********************************************************************
*
* TRANSFORM Z FROM 1D WORKSPACE INTO 2D BLOCKCYCLIC STORAGE
*
***********************************************************************
IF ( WANTZ ) THEN
DO 170 I = 1, M
IWORK( M+NPROCS+1+IWORK( NPROCS+1+I ) ) = I
170 CONTINUE
* Store NVS in IWORK(1:NPROCS+1) for PZLAEVSWP
IWORK( 1 ) = 0
DO 180 I = 1, NPROCS
* Find IL and IU for processor i-1
* Has already been computed by PMPIM2 and stored
IPIL = IWORK(INDILU+I-1)
IPIU = IWORK(INDILU+NPROCS+I-1)
IF (IPIL .EQ. 0) THEN
IWORK( I + 1 ) = IWORK( I )
ELSE
IWORK( I + 1 ) = IWORK( I ) + IPIU - IPIL + 1
ENDIF
180 CONTINUE
IF ( FIRST ) THEN
CALL PZLAEVSWP(N, RWORK( INDRW ), N, Z, IZ, JZ,
$ DESCZ, IWORK( 1 ), IWORK( NPROCS+M+2 ), RWORK( INDRWORK ),
$ SIZE1 )
ELSE
CALL PZLAEVSWP(N, RWORK( INDRW + N ), N, Z, IZ, JZ,
$ DESCZ, IWORK( 1 ), IWORK( NPROCS+M+2 ), RWORK( INDRWORK ),
$ SIZE1 )
END IF
*
NZ = M
*
***********************************************************************
*
* Compute eigenvectors of A from eigenvectors of T
*
***********************************************************************
IF( NZ.GT.0 ) THEN
CALL PZUNMTR( 'L', UPLO, 'N', N, NZ, A, IA, JA, DESCA,
$ WORK( INDTAU ), Z, IZ, JZ, DESCZ,
$ WORK( INDWORK ), LLWORK, IINFO )
END IF
IF (IINFO.NE.0) THEN
CALL PXERBLA( ICTXT, 'PZUNMTR', -IINFO )
RETURN
END IF
*
END IF
*
WORK( 1 ) = DCMPLX( LWOPT )
RWORK( 1 ) = DBLE( LRWOPT )
IWORK( 1 ) = LIWMIN
RETURN
*
* End of PZHEEVR
*
END
|