1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
SUBROUTINE PZHENGST( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
$ DESCB, SCALE, WORK, LWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* October 15, 1999
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER IA, IB, IBTYPE, INFO, JA, JB, LWORK, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCB( * )
COMPLEX*16 A( * ), B( * ), WORK( * )
* ..
*
* Purpose
*
* =======
*
* PZHENGST reduces a complex Hermitian-definite generalized
* eigenproblem to standard form.
*
* PZHENGST performs the same function as PZHEGST, but is based on
* rank 2K updates, which are faster and more scalable than
* triangular solves (the basis of PZHENGST).
*
* PZHENGST calls PZHEGST when UPLO='U', hence PZHENGST provides
* improved performance only when UPLO='L', IBTYPE=1.
*
* PZHENGST also calls PZHEGST when insufficient workspace is
* provided, hence PZHENGST provides improved
* performance only when LWORK >= 2 * NP0 * NB + NQ0 * NB + NB * NB
*
* In the following sub( A ) denotes A( IA:IA+N-1, JA:JA+N-1 ) and
* sub( B ) denotes B( IB:IB+N-1, JB:JB+N-1 ).
*
* If IBTYPE = 1, the problem is sub( A )*x = lambda*sub( B )*x,
* and sub( A ) is overwritten by inv(U**H)*sub( A )*inv(U) or
* inv(L)*sub( A )*inv(L**H)
*
* If IBTYPE = 2 or 3, the problem is sub( A )*sub( B )*x = lambda*x or
* sub( B )*sub( A )*x = lambda*x, and sub( A ) is overwritten by
* U*sub( A )*U**H or L**H*sub( A )*L.
*
* sub( B ) must have been previously factorized as U**H*U or L*L**H by
* PZPOTRF.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* IBTYPE (global input) INTEGER
* = 1: compute inv(U**H)*sub( A )*inv(U) or
* inv(L)*sub( A )*inv(L**H);
* = 2 or 3: compute U*sub( A )*U**H or L**H*sub( A )*L.
*
* UPLO (global input) CHARACTER
* = 'U': Upper triangle of sub( A ) is stored and sub( B ) is
* factored as U**H*U;
* = 'L': Lower triangle of sub( A ) is stored and sub( B ) is
* factored as L*L**H.
*
* N (global input) INTEGER
* The order of the matrices sub( A ) and sub( B ). N >= 0.
*
* A (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* N-by-N Hermitian distributed matrix sub( A ). If UPLO = 'U',
* the leading N-by-N upper triangular part of sub( A ) contains
* the upper triangular part of the matrix, and its strictly
* lower triangular part is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of sub( A ) contains
* the lower triangular part of the matrix, and its strictly
* upper triangular part is not referenced.
*
* On exit, if INFO = 0, the transformed matrix, stored in the
* same format as sub( A ).
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* B (local input) COMPLEX*16 pointer into the local memory
* to an array of dimension (LLD_B, LOCc(JB+N-1)). On entry,
* this array contains the local pieces of the triangular factor
* from the Cholesky factorization of sub( B ), as returned by
* PZPOTRF.
*
* IB (global input) INTEGER
* B's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JB (global input) INTEGER
* B's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCB (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix B.
*
* SCALE (global output) DOUBLE PRECISION
* Amount by which the eigenvalues should be scaled to
* compensate for the scaling performed in this routine.
* At present, SCALE is always returned as 1.0, it is
* returned here to allow for future enhancement.
*
* WORK (local workspace/local output) COMPLEX*16 array,
* dimension (LWORK)
* On exit, WORK( 1 ) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= MAX( NB * ( NP0 +1 ), 3 * NB )
*
* When IBTYPE = 1 and UPLO = 'L', PZHENGST provides improved
* performance when LWORK >= 2 * NP0 * NB + NQ0 * NB + NB * NB
*
* where NB = MB_A = NB_A,
* NP0 = NUMROC( N, NB, 0, 0, NPROW ),
* NQ0 = NUMROC( N, NB, 0, 0, NPROW ),
*
* NUMROC ia a ScaLAPACK tool functions
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the
* optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* =====================================================================
*
*
*
* .. Parameters ..
COMPLEX*16 ONEHALF, ONE, MONE
DOUBLE PRECISION RONE
PARAMETER ( ONEHALF = ( 0.5D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ),
$ MONE = ( -1.0D0, 0.0D0 ), RONE = 1.0D0 )
INTEGER DLEN_, CTXT_, MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( DLEN_ = 9, CTXT_ = 2, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER I, IACOL, IAROW, IBCOL, IBROW, ICOFFA, ICOFFB,
$ ICTXT, INDAA, INDG, INDR, INDRT, IROFFA,
$ IROFFB, J, K, KB, LWMIN, LWOPT, MYCOL, MYROW,
$ NB, NP0, NPCOL, NPK, NPROW, NQ0, POSTK
* ..
* .. Local Arrays ..
INTEGER DESCAA( DLEN_ ), DESCG( DLEN_ ),
$ DESCR( DLEN_ ), DESCRT( DLEN_ ), IDUM1( 2 ),
$ IDUM2( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER INDXG2P, NUMROC
EXTERNAL LSAME, INDXG2P, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCSET, PCHK2MAT,
$ PXERBLA, PZGEMM, PZHEGST, PZHEMM, PZHER2K,
$ PZLACPY, PZTRSM
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, DCONJG, ICHAR, MAX, MIN, MOD
* ..
* .. Executable Statements ..
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
SCALE = 1.0D0
*
NB = DESCA( MB_ )
*
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 700+CTXT_ )
ELSE
UPPER = LSAME( UPLO, 'U' )
CALL CHK1MAT( N, 3, N, 3, IA, JA, DESCA, 7, INFO )
CALL CHK1MAT( N, 3, N, 3, IB, JB, DESCB, 11, INFO )
IF( INFO.EQ.0 ) THEN
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
$ NPROW )
IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
$ NPROW )
IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
IBCOL = INDXG2P( JB, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
$ NPCOL )
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
IROFFB = MOD( IB-1, DESCB( MB_ ) )
ICOFFB = MOD( JB-1, DESCB( NB_ ) )
NP0 = NUMROC( N, NB, 0, 0, NPROW )
NQ0 = NUMROC( N, NB, 0, 0, NPCOL )
LWMIN = MAX( NB*( NP0+1 ), 3*NB )
IF( IBTYPE.EQ.1 .AND. .NOT.UPPER ) THEN
LWOPT = 2*NP0*NB + NQ0*NB + NB*NB
ELSE
LWOPT = LWMIN
END IF
WORK( 1 ) = DCMPLX( DBLE( LWOPT ) )
LQUERY = ( LWORK.EQ.-1 )
IF( IBTYPE.LT.1 .OR. IBTYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( IROFFA.NE.0 ) THEN
INFO = -5
ELSE IF( ICOFFA.NE.0 ) THEN
INFO = -6
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 700+NB_ )
ELSE IF( IROFFB.NE.0 .OR. IBROW.NE.IAROW ) THEN
INFO = -9
ELSE IF( ICOFFB.NE.0 .OR. IBCOL.NE.IACOL ) THEN
INFO = -10
ELSE IF( DESCB( MB_ ).NE.DESCA( MB_ ) ) THEN
INFO = -( 1100+MB_ )
ELSE IF( DESCB( NB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 1100+NB_ )
ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
INFO = -( 1100+CTXT_ )
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
END IF
IDUM1( 1 ) = IBTYPE
IDUM2( 1 ) = 1
IF( UPPER ) THEN
IDUM1( 2 ) = ICHAR( 'U' )
ELSE
IDUM1( 2 ) = ICHAR( 'L' )
END IF
IDUM2( 2 ) = 2
CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 7, N, 3, N, 3, IB,
$ JB, DESCB, 11, 2, IDUM1, IDUM2, INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZHENGST', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
*
IF( IBTYPE.NE.1 .OR. UPPER .OR. LWORK.LT.LWOPT ) THEN
CALL PZHEGST( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
$ DESCB, SCALE, INFO )
RETURN
END IF
*
CALL DESCSET( DESCG, N, NB, NB, NB, IAROW, IACOL, ICTXT, NP0 )
CALL DESCSET( DESCR, N, NB, NB, NB, IAROW, IACOL, ICTXT, NP0 )
CALL DESCSET( DESCRT, NB, N, NB, NB, IAROW, IACOL, ICTXT, NB )
CALL DESCSET( DESCAA, NB, NB, NB, NB, IAROW, IACOL, ICTXT, NB )
*
INDG = 1
INDR = INDG + DESCG( LLD_ )*NB
INDAA = INDR + DESCR( LLD_ )*NB
INDRT = INDAA + DESCAA( LLD_ )*NB
*
DO 30 K = 1, N, NB
*
KB = MIN( N-K+1, NB )
POSTK = K + KB
NPK = N - POSTK + 1
*
*
CALL PZLACPY( 'A', N-POSTK+1, KB, B, POSTK+IB-1, K+JB-1, DESCB,
$ WORK( INDG ), POSTK, 1, DESCG )
CALL PZLACPY( 'A', N-POSTK+1, KB, A, POSTK+IA-1, K+JA-1, DESCA,
$ WORK( INDR ), POSTK, 1, DESCR )
CALL PZLACPY( 'A', KB, K-1, A, K+IA-1, JA, DESCA,
$ WORK( INDRT ), 1, 1, DESCRT )
*
CALL PZLACPY( 'L', KB, KB, A, K+IA-1, K+JA-1, DESCA,
$ WORK( INDR ), K, 1, DESCR )
CALL PZTRSM( 'Right', 'L', 'N', 'N', NPK, KB, MONE, B, K+IB-1,
$ K+JB-1, DESCB, WORK( INDG ), POSTK, 1, DESCG )
*
CALL PZHEMM( 'Right', 'L', NPK, KB, ONEHALF, A, K+IA-1, K+JA-1,
$ DESCA, WORK( INDG ), POSTK, 1, DESCG, ONE,
$ WORK( INDR ), POSTK, 1, DESCR )
*
CALL PZHER2K( 'Lower', 'No T', NPK, KB, ONE, WORK( INDG ),
$ POSTK, 1, DESCG, WORK( INDR ), POSTK, 1, DESCR,
$ RONE, A, POSTK+IA-1, POSTK+JA-1, DESCA )
*
CALL PZGEMM( 'No T', 'No Conj', NPK, K-1, KB, ONE,
$ WORK( INDG ), POSTK, 1, DESCG, WORK( INDRT ), 1,
$ 1, DESCRT, ONE, A, POSTK+IA-1, JA, DESCA )
*
CALL PZHEMM( 'Right', 'L', NPK, KB, ONE, WORK( INDR ), K, 1,
$ DESCR, WORK( INDG ), POSTK, 1, DESCG, ONE, A,
$ POSTK+IA-1, K+JA-1, DESCA )
*
CALL PZTRSM( 'Left', 'Lower', 'No Conj', 'Non-unit', KB, K-1,
$ ONE, B, K+IB-1, K+JB-1, DESCB, A, K+IA-1, JA,
$ DESCA )
*
CALL PZLACPY( 'L', KB, KB, A, K+IA-1, K+JA-1, DESCA,
$ WORK( INDAA ), 1, 1, DESCAA )
*
IF( MYROW.EQ.DESCAA( RSRC_ ) .AND. MYCOL.EQ.DESCAA( CSRC_ ) )
$ THEN
DO 20 I = 1, KB
DO 10 J = 1, I
WORK( INDAA+J-1+( I-1 )*DESCAA( LLD_ ) )
$ = DCONJG( WORK( INDAA+I-1+( J-1 )*
$ DESCAA( LLD_ ) ) )
10 CONTINUE
20 CONTINUE
END IF
*
CALL PZTRSM( 'Left', 'Lower', 'No Conj', 'Non-unit', KB, KB,
$ ONE, B, K+IB-1, K+JB-1, DESCB, WORK( INDAA ), 1,
$ 1, DESCAA )
*
CALL PZTRSM( 'Right', 'Lower', 'Conj', 'Non-unit', KB, KB, ONE,
$ B, K+IB-1, K+JB-1, DESCB, WORK( INDAA ), 1, 1,
$ DESCAA )
*
CALL PZLACPY( 'L', KB, KB, WORK( INDAA ), 1, 1, DESCAA, A,
$ K+IA-1, K+JA-1, DESCA )
*
CALL PZTRSM( 'Right', 'Lower', 'Conj', 'Non-unit', NPK, KB,
$ ONE, B, K+IB-1, K+JB-1, DESCB, A, POSTK+IA-1,
$ K+JA-1, DESCA )
*
DESCR( CSRC_ ) = MOD( DESCR( CSRC_ )+1, NPCOL )
DESCG( CSRC_ ) = MOD( DESCG( CSRC_ )+1, NPCOL )
DESCRT( RSRC_ ) = MOD( DESCRT( RSRC_ )+1, NPROW )
DESCAA( RSRC_ ) = MOD( DESCAA( RSRC_ )+1, NPROW )
DESCAA( CSRC_ ) = MOD( DESCAA( CSRC_ )+1, NPCOL )
30 CONTINUE
*
WORK( 1 ) = DCMPLX( DBLE( LWOPT ) )
*
RETURN
END
|