File: pzhengst.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (427 lines) | stat: -rw-r--r-- 17,392 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
      SUBROUTINE PZHENGST( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
     $                     DESCB, SCALE, WORK, LWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     October 15, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            IA, IB, IBTYPE, INFO, JA, JB, LWORK, N
      DOUBLE PRECISION   SCALE
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * )
      COMPLEX*16         A( * ), B( * ), WORK( * )
*     ..
*
*  Purpose
*
*  =======
*
*  PZHENGST reduces a complex Hermitian-definite generalized
*  eigenproblem to standard form.
*
*  PZHENGST performs the same function as PZHEGST, but is based on
*  rank 2K updates, which are faster and more scalable than
*  triangular solves (the basis of PZHENGST).
*
*  PZHENGST calls PZHEGST when UPLO='U', hence PZHENGST provides
*  improved performance only when UPLO='L', IBTYPE=1.
*
*  PZHENGST also calls PZHEGST when insufficient workspace is
*  provided,  hence PZHENGST provides improved
*  performance only when LWORK >= 2 * NP0 * NB + NQ0 * NB + NB * NB
*
*  In the following sub( A ) denotes A( IA:IA+N-1, JA:JA+N-1 ) and
*  sub( B ) denotes B( IB:IB+N-1, JB:JB+N-1 ).
*
*  If IBTYPE = 1, the problem is sub( A )*x = lambda*sub( B )*x,
*  and sub( A ) is overwritten by inv(U**H)*sub( A )*inv(U) or
*  inv(L)*sub( A )*inv(L**H)
*
*  If IBTYPE = 2 or 3, the problem is sub( A )*sub( B )*x = lambda*x or
*  sub( B )*sub( A )*x = lambda*x, and sub( A ) is overwritten by
*  U*sub( A )*U**H or L**H*sub( A )*L.
*
*  sub( B ) must have been previously factorized as U**H*U or L*L**H by
*  PZPOTRF.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  IBTYPE   (global input) INTEGER
*          = 1: compute inv(U**H)*sub( A )*inv(U) or
*               inv(L)*sub( A )*inv(L**H);
*          = 2 or 3: compute U*sub( A )*U**H or L**H*sub( A )*L.
*
*  UPLO    (global input) CHARACTER
*          = 'U':  Upper triangle of sub( A ) is stored and sub( B ) is
*                  factored as U**H*U;
*          = 'L':  Lower triangle of sub( A ) is stored and sub( B ) is
*                  factored as L*L**H.
*
*  N       (global input) INTEGER
*          The order of the matrices sub( A ) and sub( B ).  N >= 0.
*
*  A       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          N-by-N Hermitian distributed matrix sub( A ). If UPLO = 'U',
*          the leading N-by-N upper triangular part of sub( A ) contains
*          the upper triangular part of the matrix, and its strictly
*          lower triangular part is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of sub( A ) contains
*          the lower triangular part of the matrix, and its strictly
*          upper triangular part is not referenced.
*
*          On exit, if INFO = 0, the transformed matrix, stored in the
*          same format as sub( A ).
*
*  IA      (global input) INTEGER
*          A's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JA      (global input) INTEGER
*          A's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  B       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_B, LOCc(JB+N-1)). On entry,
*          this array contains the local pieces of the triangular factor
*          from the Cholesky factorization of sub( B ), as returned by
*          PZPOTRF.
*
*  IB      (global input) INTEGER
*          B's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JB      (global input) INTEGER
*          B's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  SCALE   (global output) DOUBLE PRECISION
*          Amount by which the eigenvalues should be scaled to
*          compensate for the scaling performed in this routine.
*          At present, SCALE is always returned as 1.0, it is
*          returned here to allow for future enhancement.
*
*  WORK    (local workspace/local output) COMPLEX*16 array,
*                                                  dimension (LWORK)
*          On exit, WORK( 1 ) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK >= MAX( NB * ( NP0 +1 ), 3 * NB )
*
*          When IBTYPE = 1 and UPLO = 'L', PZHENGST provides improved
*          performance when LWORK >= 2 * NP0 * NB + NQ0 * NB + NB * NB
*
*          where NB = MB_A = NB_A,
*          NP0 = NUMROC( N, NB, 0, 0, NPROW ),
*          NQ0 = NUMROC( N, NB, 0, 0, NPROW ),
*
*          NUMROC ia a ScaLAPACK tool functions
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the
*          optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  =====================================================================
*
*
*
*     .. Parameters ..
      COMPLEX*16         ONEHALF, ONE, MONE
      DOUBLE PRECISION   RONE
      PARAMETER          ( ONEHALF = ( 0.5D0, 0.0D0 ),
     $                   ONE = ( 1.0D0, 0.0D0 ),
     $                   MONE = ( -1.0D0, 0.0D0 ), RONE = 1.0D0 )
      INTEGER            DLEN_, CTXT_, MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( DLEN_ = 9, CTXT_ = 2, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, IACOL, IAROW, IBCOL, IBROW, ICOFFA, ICOFFB,
     $                   ICTXT, INDAA, INDG, INDR, INDRT, IROFFA,
     $                   IROFFB, J, K, KB, LWMIN, LWOPT, MYCOL, MYROW,
     $                   NB, NP0, NPCOL, NPK, NPROW, NQ0, POSTK
*     ..
*     .. Local Arrays ..
      INTEGER            DESCAA( DLEN_ ), DESCG( DLEN_ ),
     $                   DESCR( DLEN_ ), DESCRT( DLEN_ ), IDUM1( 2 ),
     $                   IDUM2( 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            INDXG2P, NUMROC
      EXTERNAL           LSAME, INDXG2P, NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCSET, PCHK2MAT,
     $                   PXERBLA, PZGEMM, PZHEGST, PZHEMM, PZHER2K,
     $                   PZLACPY, PZTRSM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, DCONJG, ICHAR, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      SCALE = 1.0D0
*
      NB = DESCA( MB_ )
*
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 700+CTXT_ )
      ELSE
         UPPER = LSAME( UPLO, 'U' )
         CALL CHK1MAT( N, 3, N, 3, IA, JA, DESCA, 7, INFO )
         CALL CHK1MAT( N, 3, N, 3, IB, JB, DESCB, 11, INFO )
         IF( INFO.EQ.0 ) THEN
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $              NPROW )
            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $              NPROW )
            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $              NPCOL )
            IBCOL = INDXG2P( JB, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
     $              NPCOL )
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IROFFB = MOD( IB-1, DESCB( MB_ ) )
            ICOFFB = MOD( JB-1, DESCB( NB_ ) )
            NP0 = NUMROC( N, NB, 0, 0, NPROW )
            NQ0 = NUMROC( N, NB, 0, 0, NPCOL )
            LWMIN = MAX( NB*( NP0+1 ), 3*NB )
            IF( IBTYPE.EQ.1 .AND. .NOT.UPPER ) THEN
               LWOPT = 2*NP0*NB + NQ0*NB + NB*NB
            ELSE
               LWOPT = LWMIN
            END IF
            WORK( 1 ) = DCMPLX( DBLE( LWOPT ) )
            LQUERY = ( LWORK.EQ.-1 )
            IF( IBTYPE.LT.1 .OR. IBTYPE.GT.3 ) THEN
               INFO = -1
            ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -2
            ELSE IF( N.LT.0 ) THEN
               INFO = -3
            ELSE IF( IROFFA.NE.0 ) THEN
               INFO = -5
            ELSE IF( ICOFFA.NE.0 ) THEN
               INFO = -6
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 700+NB_ )
            ELSE IF( IROFFB.NE.0 .OR. IBROW.NE.IAROW ) THEN
               INFO = -9
            ELSE IF( ICOFFB.NE.0 .OR. IBCOL.NE.IACOL ) THEN
               INFO = -10
            ELSE IF( DESCB( MB_ ).NE.DESCA( MB_ ) ) THEN
               INFO = -( 1100+MB_ )
            ELSE IF( DESCB( NB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 1100+NB_ )
            ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
               INFO = -( 1100+CTXT_ )
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -13
            END IF
         END IF
         IDUM1( 1 ) = IBTYPE
         IDUM2( 1 ) = 1
         IF( UPPER ) THEN
            IDUM1( 2 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 2 ) = ICHAR( 'L' )
         END IF
         IDUM2( 2 ) = 2
         CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 7, N, 3, N, 3, IB,
     $                  JB, DESCB, 11, 2, IDUM1, IDUM2, INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PZHENGST', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*
      IF( IBTYPE.NE.1 .OR. UPPER .OR. LWORK.LT.LWOPT ) THEN
         CALL PZHEGST( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
     $                 DESCB, SCALE, INFO )
         RETURN
      END IF
*
      CALL DESCSET( DESCG, N, NB, NB, NB, IAROW, IACOL, ICTXT, NP0 )
      CALL DESCSET( DESCR, N, NB, NB, NB, IAROW, IACOL, ICTXT, NP0 )
      CALL DESCSET( DESCRT, NB, N, NB, NB, IAROW, IACOL, ICTXT, NB )
      CALL DESCSET( DESCAA, NB, NB, NB, NB, IAROW, IACOL, ICTXT, NB )
*
      INDG = 1
      INDR = INDG + DESCG( LLD_ )*NB
      INDAA = INDR + DESCR( LLD_ )*NB
      INDRT = INDAA + DESCAA( LLD_ )*NB
*
      DO 30 K = 1, N, NB
*
         KB = MIN( N-K+1, NB )
         POSTK = K + KB
         NPK = N - POSTK + 1
*
*
         CALL PZLACPY( 'A', N-POSTK+1, KB, B, POSTK+IB-1, K+JB-1, DESCB,
     $                 WORK( INDG ), POSTK, 1, DESCG )
         CALL PZLACPY( 'A', N-POSTK+1, KB, A, POSTK+IA-1, K+JA-1, DESCA,
     $                 WORK( INDR ), POSTK, 1, DESCR )
         CALL PZLACPY( 'A', KB, K-1, A, K+IA-1, JA, DESCA,
     $                 WORK( INDRT ), 1, 1, DESCRT )
*
         CALL PZLACPY( 'L', KB, KB, A, K+IA-1, K+JA-1, DESCA,
     $                 WORK( INDR ), K, 1, DESCR )
         CALL PZTRSM( 'Right', 'L', 'N', 'N', NPK, KB, MONE, B, K+IB-1,
     $                K+JB-1, DESCB, WORK( INDG ), POSTK, 1, DESCG )
*
         CALL PZHEMM( 'Right', 'L', NPK, KB, ONEHALF, A, K+IA-1, K+JA-1,
     $                DESCA, WORK( INDG ), POSTK, 1, DESCG, ONE,
     $                WORK( INDR ), POSTK, 1, DESCR )
*
         CALL PZHER2K( 'Lower', 'No T', NPK, KB, ONE, WORK( INDG ),
     $                 POSTK, 1, DESCG, WORK( INDR ), POSTK, 1, DESCR,
     $                 RONE, A, POSTK+IA-1, POSTK+JA-1, DESCA )
*
         CALL PZGEMM( 'No T', 'No Conj', NPK, K-1, KB, ONE,
     $                WORK( INDG ), POSTK, 1, DESCG, WORK( INDRT ), 1,
     $                1, DESCRT, ONE, A, POSTK+IA-1, JA, DESCA )
*
         CALL PZHEMM( 'Right', 'L', NPK, KB, ONE, WORK( INDR ), K, 1,
     $                DESCR, WORK( INDG ), POSTK, 1, DESCG, ONE, A,
     $                POSTK+IA-1, K+JA-1, DESCA )
*
         CALL PZTRSM( 'Left', 'Lower', 'No Conj', 'Non-unit', KB, K-1,
     $                ONE, B, K+IB-1, K+JB-1, DESCB, A, K+IA-1, JA,
     $                DESCA )
*
         CALL PZLACPY( 'L', KB, KB, A, K+IA-1, K+JA-1, DESCA,
     $                 WORK( INDAA ), 1, 1, DESCAA )
*
         IF( MYROW.EQ.DESCAA( RSRC_ ) .AND. MYCOL.EQ.DESCAA( CSRC_ ) )
     $        THEN
            DO 20 I = 1, KB
               DO 10 J = 1, I
                  WORK( INDAA+J-1+( I-1 )*DESCAA( LLD_ ) )
     $               = DCONJG( WORK( INDAA+I-1+( J-1 )*
     $               DESCAA( LLD_ ) ) )
   10          CONTINUE
   20       CONTINUE
         END IF
*
         CALL PZTRSM( 'Left', 'Lower', 'No Conj', 'Non-unit', KB, KB,
     $                ONE, B, K+IB-1, K+JB-1, DESCB, WORK( INDAA ), 1,
     $                1, DESCAA )
*
         CALL PZTRSM( 'Right', 'Lower', 'Conj', 'Non-unit', KB, KB, ONE,
     $                B, K+IB-1, K+JB-1, DESCB, WORK( INDAA ), 1, 1,
     $                DESCAA )
*
         CALL PZLACPY( 'L', KB, KB, WORK( INDAA ), 1, 1, DESCAA, A,
     $                 K+IA-1, K+JA-1, DESCA )
*
         CALL PZTRSM( 'Right', 'Lower', 'Conj', 'Non-unit', NPK, KB,
     $                ONE, B, K+IB-1, K+JB-1, DESCB, A, POSTK+IA-1,
     $                K+JA-1, DESCA )
*
         DESCR( CSRC_ ) = MOD( DESCR( CSRC_ )+1, NPCOL )
         DESCG( CSRC_ ) = MOD( DESCG( CSRC_ )+1, NPCOL )
         DESCRT( RSRC_ ) = MOD( DESCRT( RSRC_ )+1, NPROW )
         DESCAA( RSRC_ ) = MOD( DESCAA( RSRC_ )+1, NPROW )
         DESCAA( CSRC_ ) = MOD( DESCAA( CSRC_ )+1, NPCOL )
   30 CONTINUE
*
      WORK( 1 ) = DCMPLX( DBLE( LWOPT ) )
*
      RETURN
      END