1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
SUBROUTINE PZHETD2( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
$ LWORK, INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER IA, INFO, JA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION D( * ), E( * )
COMPLEX*16 A( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PZHETD2 reduces a complex Hermitian matrix sub( A ) to Hermitian
* tridiagonal form T by an unitary similarity transformation:
* Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix sub( A ) is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* Hermitian distributed matrix sub( A ). If UPLO = 'U', the
* leading N-by-N upper triangular part of sub( A ) contains
* the upper triangular part of the matrix, and its strictly
* lower triangular part is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of sub( A ) contains the
* lower triangular part of the matrix, and its strictly upper
* triangular part is not referenced. On exit, if UPLO = 'U',
* the diagonal and first superdiagonal of sub( A ) are over-
* written by the corresponding elements of the tridiagonal
* matrix T, and the elements above the first superdiagonal,
* with the array TAU, represent the unitary matrix Q as a
* product of elementary reflectors; if UPLO = 'L', the diagonal
* and first subdiagonal of sub( A ) are overwritten by the
* corresponding elements of the tridiagonal matrix T, and the
* elements below the first subdiagonal, with the array TAU,
* represent the unitary matrix Q as a product of elementary
* reflectors. See Further Details.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* D (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
* The diagonal elements of the tridiagonal matrix T:
* D(i) = A(i,i). D is tied to the distributed matrix A.
*
* E (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
* if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
* distributed matrix A.
*
* TAU (local output) COMPLEX*16, array, dimension
* LOCc(JA+N-1). This array contains the scalar factors TAU of
* the elementary reflectors. TAU is tied to the distributed
* matrix A.
*
* WORK (local workspace/local output) COMPLEX*16 array,
* dimension (LWORK)
* On exit, WORK( 1 ) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= 3*N.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* INFO (local output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Further Details
* ===============
*
* If UPLO = 'U', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(n-1) . . . H(2) H(1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
* A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
*
* If UPLO = 'L', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(1) H(2) . . . H(n-1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
* A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
* The contents of sub( A ) on exit are illustrated by the following
* examples with n = 5:
*
* if UPLO = 'U': if UPLO = 'L':
*
* ( d e v2 v3 v4 ) ( d )
* ( d e v3 v4 ) ( e d )
* ( d e v4 ) ( v1 e d )
* ( d e ) ( v1 v2 e d )
* ( d ) ( v1 v2 v3 e d )
*
* where d and e denote diagonal and off-diagonal elements of T, and vi
* denotes an element of the vector defining H(i).
*
* Alignment requirements
* ======================
*
* The distributed submatrix sub( A ) must verify some alignment proper-
* ties, namely the following expression should be true:
* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA ) with
* IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 HALF, ONE, ZERO
PARAMETER ( HALF = ( 0.5D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER IACOL, IAROW, ICOFFA, ICTXT, II, IK, IROFFA, J,
$ JJ, JK, JN, LDA, LWMIN, MYCOL, MYROW, NPCOL,
$ NPROW
COMPLEX*16 ALPHA, TAUI, DOTC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GRIDINFO, CHK1MAT, INFOG2L,
$ PXERBLA, ZAXPY, ZGEBR2D, ZGEBS2D,
$ ZHEMV, ZHER2, ZLARFG, ZZDOTC
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(600+CTXT_)
ELSE
UPPER = LSAME( UPLO, 'U' )
CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
LWMIN = 3 * N
*
WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
LQUERY = ( LWORK.EQ.-1 )
IF( INFO.EQ.0 ) THEN
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( IROFFA.NE.ICOFFA ) THEN
INFO = -5
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -(600+NB_)
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -11
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZHETD2', -INFO )
CALL BLACS_ABORT( ICTXT, 1 )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
* Compute local information
*
LDA = DESCA( LLD_ )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
$ IAROW, IACOL )
*
IF( UPPER ) THEN
*
* Process(IAROW, IACOL) owns block to be reduced
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
*
* Reduce the upper triangle of sub( A )
*
IK = II+N-1+(JJ+N-2)*LDA
A( IK ) = DBLE( A( IK ) )
DO 10 J = N-1, 1, -1
IK = II + J - 1
JK = JJ + J - 1
*
* Generate elementary reflector H(i) = I - tau * v * v'
* to annihilate A(IA:IA+J-1,JA:JA+J-1)
*
ALPHA = A( IK+JK*LDA )
CALL ZLARFG( J, ALPHA, A( II+JK*LDA ), 1, TAUI )
E( JK+1 ) = DBLE( ALPHA )
*
IF( TAUI.NE.ZERO ) THEN
*
* Apply H(i) from both sides to
* A(IA:IA+J-1,JA:JA+J-1)
*
A( IK+JK*LDA ) = ONE
*
* Compute x := tau * A * v storing x in TAU(1:i)
*
CALL ZHEMV( UPLO, J, TAUI, A( II+(JJ-1)*LDA ),
$ LDA, A( II+JK*LDA ), 1, ZERO,
$ TAU( JJ ), 1 )
*
* Compute w := x - 1/2 * tau * (x'*v) * v
*
CALL ZZDOTC( J, DOTC, TAU( JJ ), 1, A( II+JK*LDA ),
$ 1 )
ALPHA = -HALF*TAUI*DOTC
CALL ZAXPY( J, ALPHA, A( II+JK*LDA ), 1,
$ TAU( JJ ), 1 )
*
* Apply the transformation as a rank-2 update:
* A := A - v * w' - w * v'
*
CALL ZHER2( UPLO, J, -ONE, A( II+JK*LDA ), 1,
$ TAU( JJ ), 1, A( II+(JJ-1)*LDA ),
$ LDA )
END IF
*
* Copy D, E, TAU to broadcast them columnwise.
*
A( IK+JK*LDA ) = DCMPLX( E( JK+1 ) )
D( JK+1 ) = DBLE( A( IK+1+JK*LDA ) )
WORK( J+1 ) = DCMPLX( D( JK+1 ) )
WORK( N+J+1 ) = DCMPLX( E( JK+1 ) )
TAU( JK+1 ) = TAUI
WORK( 2*N+J+1 ) = TAU( JK+1 )
*
10 CONTINUE
D( JJ ) = DBLE( A( II+(JJ-1)*LDA ) )
WORK( 1 ) = DCMPLX( D( JJ ) )
WORK( N+1 ) = ZERO
WORK( 2*N+1 ) = ZERO
*
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 1, 3*N, WORK, 1 )
*
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 1, 3*N, WORK, 1,
$ IAROW, IACOL )
DO 20 J = 2, N
JN = JJ + J - 1
D( JN ) = DBLE( WORK( J ) )
E( JN ) = DBLE( WORK( N+J ) )
TAU( JN ) = WORK( 2*N+J )
20 CONTINUE
D( JJ ) = DBLE( WORK( 1 ) )
END IF
END IF
*
ELSE
*
* Process (IAROW, IACOL) owns block to be factorized
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
*
* Reduce the lower triangle of sub( A )
*
A( II+(JJ-1)*LDA ) = DBLE( A( II+(JJ-1)*LDA ) )
DO 30 J = 1, N - 1
IK = II + J - 1
JK = JJ + J - 1
*
* Generate elementary reflector H(i) = I - tau * v * v'
* to annihilate A(IA+J-JA+2:IA+N-1,JA+J-1)
*
ALPHA = A( IK+1+(JK-1)*LDA )
CALL ZLARFG( N-J, ALPHA, A( IK+2+(JK-1)*LDA ), 1,
$ TAUI )
E( JK ) = DBLE( ALPHA )
*
IF( TAUI.NE.ZERO ) THEN
*
* Apply H(i) from both sides to
* A(IA+J-JA+1:IA+N-1,JA+J+1:JA+N-1)
*
A( IK+1+(JK-1)*LDA ) = ONE
*
* Compute x := tau * A * v storing y in TAU(i:n-1)
*
CALL ZHEMV( UPLO, N-J, TAUI, A( IK+1+JK*LDA ),
$ LDA, A( IK+1+(JK-1)*LDA ), 1,
$ ZERO, TAU( JK ), 1 )
*
* Compute w := x - 1/2 * tau * (x'*v) * v
*
CALL ZZDOTC( N-J, DOTC, TAU( JK ), 1,
$ A( IK+1+(JK-1)*LDA ), 1 )
ALPHA = -HALF*TAUI*DOTC
CALL ZAXPY( N-J, ALPHA, A( IK+1+(JK-1)*LDA ),
$ 1, TAU( JK ), 1 )
*
* Apply the transformation as a rank-2 update:
* A := A - v * w' - w * v'
*
CALL ZHER2( UPLO, N-J, -ONE,
$ A( IK+1+(JK-1)*LDA ), 1,
$ TAU( JK ), 1, A( IK+1+JK*LDA ),
$ LDA )
END IF
*
* Copy D(JK), E(JK), TAU(JK) to broadcast them
* columnwise.
*
A( IK+1+(JK-1)*LDA ) = DCMPLX( E( JK ) )
D( JK ) = DBLE( A( IK+(JK-1)*LDA ) )
WORK( J ) = DCMPLX( D( JK ) )
WORK( N+J ) = DCMPLX( E( JK ) )
TAU( JK ) = TAUI
WORK( 2*N+J ) = TAU( JK )
30 CONTINUE
JN = JJ + N - 1
D( JN ) = DBLE( A( II+N-1+(JN-1)*LDA ) )
WORK( N ) = DCMPLX( D( JN ) )
TAU( JN ) = ZERO
WORK( 2*N ) = ZERO
*
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 1, 3*N-1, WORK,
$ 1 )
*
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 1, 3*N-1, WORK,
$ 1, IAROW, IACOL )
DO 40 J = 1, N - 1
JN = JJ + J - 1
D( JN ) = DBLE( WORK( J ) )
E( JN ) = DBLE( WORK( N+J ) )
TAU( JN ) = WORK( 2*N+J )
40 CONTINUE
JN = JJ + N - 1
D( JN ) = DBLE( WORK( N ) )
TAU( JN ) = ZERO
END IF
END IF
END IF
*
WORK( 1 ) = DCMPLX( DBLE( LWMIN ) )
*
RETURN
*
* End of PZHETD2
*
END
|