1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
SUBROUTINE PZLABRD( M, N, NB, A, IA, JA, DESCA, D, E, TAUQ, TAUP,
$ X, IX, JX, DESCX, Y, IY, JY, DESCY, WORK )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IA, IX, IY, JA, JX, JY, M, N, NB
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCX( * ), DESCY( * )
DOUBLE PRECISION D( * ), E( * )
COMPLEX*16 A( * ), TAUP( * ), TAUQ( * ), X( * ), Y( * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* PZLABRD reduces the first NB rows and columns of a complex general
* M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper
* or lower bidiagonal form by an unitary transformation Q' * A * P, and
* returns the matrices X and Y which are needed to apply the transfor-
* mation to the unreduced part of sub( A ).
*
* If M >= N, sub( A ) is reduced to upper bidiagonal form; if M < N, to
* lower bidiagonal form.
*
* This is an auxiliary routine called by PZGEBRD.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* NB (global input) INTEGER
* The number of leading rows and columns of sub( A ) to be
* reduced.
*
* A (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* general distributed matrix sub( A ) to be reduced. On exit,
* the first NB rows and columns of the matrix are overwritten;
* the rest of the distributed matrix sub( A ) is unchanged.
* If m >= n, elements on and below the diagonal in the first NB
* columns, with the array TAUQ, represent the unitary
* matrix Q as a product of elementary reflectors; and
* elements above the diagonal in the first NB rows, with the
* array TAUP, represent the unitary matrix P as a product
* of elementary reflectors.
* If m < n, elements below the diagonal in the first NB
* columns, with the array TAUQ, represent the unitary
* matrix Q as a product of elementary reflectors, and
* elements on and above the diagonal in the first NB rows,
* with the array TAUP, represent the unitary matrix P as
* a product of elementary reflectors.
* See Further Details.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* D (local output) DOUBLE PRECISION array, dimension
* LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-1) otherwise.
* The distributed diagonal elements of the bidiagonal matrix
* B: D(i) = A(ia+i-1,ja+i-1). D is tied to the distributed
* matrix A.
*
* E (local output) DOUBLE PRECISION array, dimension
* LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
* The distributed off-diagonal elements of the bidiagonal
* distributed matrix B:
* if m >= n, E(i) = A(ia+i-1,ja+i) for i = 1,2,...,n-1;
* if m < n, E(i) = A(ia+i,ja+i-1) for i = 1,2,...,m-1.
* E is tied to the distributed matrix A.
*
* TAUQ (local output) COMPLEX*16 array dimension
* LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary
* reflectors which represent the unitary matrix Q. TAUQ is
* tied to the distributed matrix A. See Further Details.
*
* TAUP (local output) COMPLEX*16 array, dimension
* LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary
* reflectors which represent the unitary matrix P. TAUP is
* tied to the distributed matrix A. See Further Details.
*
* X (local output) COMPLEX*16 pointer into the local memory
* to an array of dimension (LLD_X,NB). On exit, the local
* pieces of the distributed M-by-NB matrix
* X(IX:IX+M-1,JX:JX+NB-1) required to update the unreduced
* part of sub( A ).
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* Y (local output) COMPLEX*16 pointer into the local memory
* to an array of dimension (LLD_Y,NB). On exit, the local
* pieces of the distributed N-by-NB matrix
* Y(IY:IY+N-1,JY:JY+NB-1) required to update the unreduced
* part of sub( A ).
*
* IY (global input) INTEGER
* The row index in the global array Y indicating the first
* row of sub( Y ).
*
* JY (global input) INTEGER
* The column index in the global array Y indicating the
* first column of sub( Y ).
*
* DESCY (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Y.
*
* WORK (local workspace) COMPLEX*16 array, dimension (LWORK)
* LWORK >= NB_A + NQ, with
*
* NQ = NUMROC( N+MOD( IA-1, NB_Y ), NB_Y, MYCOL, IACOL, NPCOL )
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
*
* INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* Further Details
* ===============
*
* The matrices Q and P are represented as products of elementary
* reflectors:
*
* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
*
* Each H(i) and G(i) has the form:
*
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
*
* where tauq and taup are complex scalars, and v and u are complex
* vectors.
*
* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
* A(ia+i-1:ia+m-1,ja+i-1); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is
* stored on exit in A(ia+i-1,ja+i:ja+n-1); tauq is stored in
* TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
*
* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
* A(ia+i+1:ia+m-1,ja+i-1); u(1:i-1) = 0, u(i) = 1, and u(i:n) is
* stored on exit in A(ia+i-1,ja+i:ja+n-1); tauq is stored in
* TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
*
* The elements of the vectors v and u together form the m-by-nb matrix
* V and the nb-by-n matrix U' which are needed, with X and Y, to apply
* the transformation to the unreduced part of the matrix, using a block
* update of the form: sub( A ) := sub( A ) - V*Y' - X*U'.
*
* The contents of sub( A ) on exit are illustrated by the following
* examples with nb = 2:
*
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
*
* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
* ( v1 v2 a a a ) ( v1 1 a a a a )
* ( v1 v2 a a a ) ( v1 v2 a a a a )
* ( v1 v2 a a a ) ( v1 v2 a a a a )
* ( v1 v2 a a a )
*
* where a denotes an element of the original matrix which is unchanged,
* vi denotes an element of the vector defining H(i), and ui an element
* of the vector defining G(i).
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, IACOL, IAROW, ICTXT, II, IPY, IW, J, JJ,
$ JWY, K, MYCOL, MYROW, NPCOL, NPROW
COMPLEX*16 ALPHA, TAU
INTEGER DESCD( DLEN_ ), DESCE( DLEN_ ),
$ DESCTP( DLEN_ ), DESCTQ( DLEN_ ),
$ DESCW( DLEN_ ), DESCWY( DLEN_ )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCSET, INFOG2L, PDELSET,
$ PZCOPY, PZELGET, PZELSET, PZGEMV,
$ PZLACGV, PZLARFG, PZSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MIN, MOD
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
$ IAROW, IACOL )
IPY = DESCA( MB_ ) + 1
IW = MOD( IA-1, DESCA( NB_ ) ) + 1
ALPHA = ZERO
*
CALL DESCSET( DESCWY, 1, N+MOD( IA-1, DESCY( NB_ ) ), 1,
$ DESCA( NB_ ), IAROW, IACOL, ICTXT, 1 )
CALL DESCSET( DESCW, DESCA( MB_ ), 1, DESCA( MB_ ), 1, IAROW,
$ IACOL, ICTXT, DESCA( MB_ ) )
CALL DESCSET( DESCTQ, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), IAROW,
$ DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
CALL DESCSET( DESCTP, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
$ DESCA( RSRC_ ), IACOL, DESCA( CTXT_ ),
$ DESCA( LLD_ ) )
*
IF( M.GE.N ) THEN
*
* Reduce to upper bidiagonal form
*
CALL DESCSET( DESCD, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), MYROW,
$ DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
CALL DESCSET( DESCE, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
$ DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
$ DESCA( LLD_ ) )
DO 10 K = 1, NB
I = IA + K - 1
J = JA + K - 1
JWY = IW + K
*
* Update A(i:ia+m-1,j)
*
IF( K.GT.1 ) THEN
CALL PZGEMV( 'No transpose', M-K+1, K-1, -ONE, A, I, JA,
$ DESCA, Y, IY, JY+K-1, DESCY, 1, ONE, A, I,
$ J, DESCA, 1 )
CALL PZGEMV( 'No transpose', M-K+1, K-1, -ONE, X, IX+K-1,
$ JX, DESCX, A, IA, J, DESCA, 1, ONE, A, I, J,
$ DESCA, 1 )
CALL PZELSET( A, I-1, J, DESCA, ALPHA )
END IF
*
* Generate reflection Q(i) to annihilate A(i+1:ia+m-1,j)
*
CALL PZLARFG( M-K+1, ALPHA, I, J, A, I+1, J, DESCA, 1,
$ TAUQ )
CALL PDELSET( D, 1, J, DESCD, DBLE( ALPHA ) )
CALL PZELSET( A, I, J, DESCA, ONE )
*
* Compute Y(IA+I:IA+N-1,J)
*
CALL PZGEMV( 'Conjugate transpose', M-K+1, N-K, ONE, A, I,
$ J+1, DESCA, A, I, J, DESCA, 1, ZERO,
$ WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
CALL PZGEMV( 'Conjugate transpose', M-K+1, K-1, ONE, A, I,
$ JA, DESCA, A, I, J, DESCA, 1, ZERO, WORK, IW,
$ 1, DESCW, 1 )
CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, Y, IY,
$ JY+K, DESCY, WORK, IW, 1, DESCW, 1, ONE,
$ WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
CALL PZGEMV( 'Conjugate transpose', M-K+1, K-1, ONE, X,
$ IX+K-1, JX, DESCX, A, I, J, DESCA, 1, ZERO,
$ WORK, IW, 1, DESCW, 1 )
CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, A, IA,
$ J+1, DESCA, WORK, IW, 1, DESCW, 1, ONE,
$ WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
*
CALL PZELGET( 'Rowwise', ' ', TAU, TAUQ, 1, J, DESCTQ )
CALL PZSCAL( N-K, TAU, WORK( IPY ), 1, JWY, DESCWY,
$ DESCWY( M_ ) )
CALL PZLACGV( N-K, WORK( IPY ), 1, JWY, DESCWY,
$ DESCWY( M_ ) )
CALL PZCOPY( N-K, WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ),
$ Y, IY+K-1, JY+K, DESCY, DESCY( M_ ) )
*
* Update A(i,j+1:ja+n-1)
*
CALL PZLACGV( N-K, A, I, J+1, DESCA, DESCA( M_ ) )
CALL PZLACGV( K, A, I, JA, DESCA, DESCA( M_ ) )
CALL PZGEMV( 'Conjugate transpose', K, N-K, -ONE, Y, IY,
$ JY+K, DESCY, A, I, JA, DESCA, DESCA( M_ ), ONE,
$ A, I, J+1, DESCA, DESCA( M_ ) )
CALL PZLACGV( K, A, I, JA, DESCA, DESCA( M_ ) )
CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, A, IA,
$ J+1, DESCA, X, IX+K-1, JX, DESCX, DESCX( M_ ),
$ ONE, A, I, J+1, DESCA, DESCA( M_ ) )
CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
CALL PZELSET( A, I, J, DESCA, DCMPLX( DBLE( ALPHA ) ) )
*
* Generate reflection P(i) to annihilate A(i,j+2:ja+n-1)
*
CALL PZLARFG( N-K, ALPHA, I, J+1, A, I,
$ MIN( J+2, N+JA-1 ), DESCA, DESCA( M_ ), TAUP )
CALL PDELSET( E, I, 1, DESCE, DBLE( ALPHA ) )
CALL PZELSET( A, I, J+1, DESCA, ONE )
*
* Compute X(I+1:IA+M-1,J)
*
CALL PZGEMV( 'No transpose', M-K, N-K, ONE, A, I+1, J+1,
$ DESCA, A, I, J+1, DESCA, DESCA( M_ ), ZERO, X,
$ IX+K, JX+K-1, DESCX, 1 )
CALL PZGEMV( 'No transpose', K, N-K, ONE, Y, IY, JY+K,
$ DESCY, A, I, J+1, DESCA, DESCA( M_ ), ZERO,
$ WORK, IW, 1, DESCW, 1 )
CALL PZGEMV( 'No transpose', M-K, K, -ONE, A, I+1, JA,
$ DESCA, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
$ JX+K-1, DESCX, 1 )
CALL PZGEMV( 'No transpose', K-1, N-K, ONE, A, IA, J+1,
$ DESCA, A, I, J+1, DESCA, DESCA( M_ ), ZERO,
$ WORK, IW, 1, DESCW, 1 )
CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, X, IX+K, JX,
$ DESCX, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
$ JX+K-1, DESCX, 1 )
*
CALL PZELGET( 'Columnwise', ' ', TAU, TAUP, I, 1, DESCTP )
CALL PZSCAL( M-K, TAU, X, IX+K, JX+K-1, DESCX, 1 )
CALL PZLACGV( N-K, A, I, J+1, DESCA, DESCA( M_ ) )
10 CONTINUE
*
ELSE
*
* Reduce to lower bidiagonal form
*
CALL DESCSET( DESCD, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
$ DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
$ DESCA( LLD_ ) )
CALL DESCSET( DESCE, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), MYROW,
$ DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
DO 20 K = 1, NB
I = IA + K - 1
J = JA + K - 1
JWY = IW + K
*
* Update A(i,j:ja+n-1)
*
CALL PZLACGV( N-K+1, A, I, J, DESCA, DESCA( M_ ) )
IF( K.GT.1 ) THEN
CALL PZLACGV( K-1, A, I, JA, DESCA, DESCA( M_ ) )
CALL PZGEMV( 'Conjugate transpose', K-1, N-K+1, -ONE, Y,
$ IY, JY+K-1, DESCY, A, I, JA, DESCA,
$ DESCA( M_ ), ONE, A, I, J, DESCA,
$ DESCA( M_ ) )
CALL PZLACGV( K-1, A, I, JA, DESCA, DESCA( M_ ) )
CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
CALL PZGEMV( 'Conjugate transpose', K-1, N-K+1, -ONE, A,
$ IA, J, DESCA, X, IX+K-1, JX, DESCX,
$ DESCX( M_ ), ONE, A, I, J, DESCA,
$ DESCA( M_ ) )
CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
CALL PZELSET( A, I, J-1, DESCA, DCMPLX( DBLE( ALPHA ) ) )
END IF
*
* Generate reflection P(i) to annihilate A(i,j+1:ja+n-1)
*
CALL PZLARFG( N-K+1, ALPHA, I, J, A, I, J+1, DESCA,
$ DESCA( M_ ), TAUP )
CALL PDELSET( D, I, 1, DESCD, DBLE( ALPHA ) )
CALL PZELSET( A, I, J, DESCA, ONE )
*
* Compute X(i+1:ia+m-1,j)
*
CALL PZGEMV( 'No transpose', M-K, N-K+1, ONE, A, I+1, J,
$ DESCA, A, I, J, DESCA, DESCA( M_ ), ZERO, X,
$ IX+K, JX+K-1, DESCX, 1 )
CALL PZGEMV( 'No transpose', K-1, N-K+1, ONE, Y, IY, JY+K-1,
$ DESCY, A, I, J, DESCA, DESCA( M_ ), ZERO,
$ WORK, IW, 1, DESCW, 1 )
CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, A, I+1, JA,
$ DESCA, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
$ JX+K-1, DESCX, 1 )
CALL PZGEMV( 'No transpose', K-1, N-K+1, ONE, A, IA, J,
$ DESCA, A, I, J, DESCA, DESCA( M_ ), ZERO,
$ WORK, IW, 1, DESCW, 1 )
CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, X, IX+K, JX,
$ DESCX, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
$ JX+K-1, DESCX, 1 )
*
CALL PZELGET( 'Columnwise', ' ', TAU, TAUP, I, 1, DESCTP )
CALL PZSCAL( M-K, TAU, X, IX+K, JX+K-1, DESCX, 1 )
CALL PZLACGV( N-K+1, A, I, J, DESCA, DESCA( M_ ) )
*
* Update A(i+1:ia+m-1,j)
*
CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, A, I+1, JA,
$ DESCA, Y, IY, JY+K-1, DESCY, 1, ONE, A, I+1, J,
$ DESCA, 1 )
CALL PZGEMV( 'No transpose', M-K, K, -ONE, X, IX+K, JX,
$ DESCX, A, IA, J, DESCA, 1, ONE, A, I+1, J,
$ DESCA, 1 )
CALL PZELSET( A, I, J, DESCA, ALPHA )
*
* Generate reflection Q(i) to annihilate A(i+2:ia+m-1,j)
*
CALL PZLARFG( M-K, ALPHA, I+1, J, A, MIN( I+2, M+IA-1 ),
$ J, DESCA, 1, TAUQ )
CALL PDELSET( E, 1, J, DESCE, DBLE( ALPHA ) )
CALL PZELSET( A, I+1, J, DESCA, ONE )
*
* Compute Y(ia+i:ia+n-1,j)
*
CALL PZGEMV( 'Conjugate transpose', M-K, N-K, ONE, A, I+1,
$ J+1, DESCA, A, I+1, J, DESCA, 1, ZERO,
$ WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
CALL PZGEMV( 'Conjugate transpose', M-K, K-1, ONE, A, I+1,
$ JA, DESCA, A, I+1, J, DESCA, 1, ZERO, WORK, IW,
$ 1, DESCW, 1 )
CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, Y, IY,
$ JY+K, DESCY, WORK, IW, 1, DESCW, 1, ONE,
$ WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
CALL PZGEMV( 'Conjugate transpose', M-K, K, ONE, X, IX+K,
$ JX, DESCX, A, I+1, J, DESCA, 1, ZERO, WORK, IW,
$ 1, DESCW, 1 )
CALL PZGEMV( 'Conjugate transpose', K, N-K, -ONE, A, IA,
$ J+1, DESCA, WORK, IW, 1, DESCW, 1, ONE,
$ WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
*
CALL PZELGET( 'Rowwise', ' ', TAU, TAUQ, 1, J, DESCTQ )
CALL PZSCAL( N-K, TAU, WORK( IPY ), 1, JWY, DESCWY,
$ DESCWY( M_ ) )
CALL PZLACGV( N-K, WORK( IPY ), 1, JWY, DESCWY,
$ DESCWY( M_ ) )
CALL PZCOPY( N-K, WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ),
$ Y, IY+K-1, JY+K, DESCY, DESCY( M_ ) )
20 CONTINUE
END IF
*
RETURN
*
* End of PZLABRD
*
END
|