File: pzlabrd.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (515 lines) | stat: -rw-r--r-- 23,315 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
      SUBROUTINE PZLABRD( M, N, NB, A, IA, JA, DESCA, D, E, TAUQ, TAUP,
     $                    X, IX, JX, DESCX, Y, IY, JY, DESCY, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER             IA, IX, IY, JA, JX, JY, M, N, NB
*     ..
*     .. Array Arguments ..
      INTEGER             DESCA( * ), DESCX( * ), DESCY( * )
      DOUBLE PRECISION   D( * ), E( * )
      COMPLEX*16          A( * ), TAUP( * ), TAUQ( * ), X( * ), Y( * ),
     $                    WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLABRD reduces the first NB rows and columns of a complex general
*  M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper
*  or lower bidiagonal form by an unitary transformation Q' * A * P, and
*  returns the matrices X and Y which are needed to apply the transfor-
*  mation to the unreduced part of sub( A ).
*
*  If M >= N, sub( A ) is reduced to upper bidiagonal form; if M < N, to
*  lower bidiagonal form.
*
*  This is an auxiliary routine called by PZGEBRD.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  NB      (global input) INTEGER
*          The number of leading rows and columns of sub( A ) to be
*          reduced.
*
*  A       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          general distributed matrix sub( A ) to be reduced. On exit,
*          the first NB rows and columns of the matrix are overwritten;
*          the rest of the distributed matrix sub( A ) is unchanged.
*          If m >= n, elements on and below the diagonal in the first NB
*            columns, with the array TAUQ, represent the unitary
*            matrix Q as a product of elementary reflectors; and
*            elements above the diagonal in the first NB rows, with the
*            array TAUP, represent the unitary matrix P as a product
*            of elementary reflectors.
*          If m < n, elements below the diagonal in the first NB
*            columns, with the array TAUQ, represent the unitary
*            matrix Q as a product of elementary reflectors, and
*            elements on and above the diagonal in the first NB rows,
*            with the array TAUP, represent the unitary matrix P as
*            a product of elementary reflectors.
*          See Further Details.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  D       (local output) DOUBLE PRECISION array, dimension
*          LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-1) otherwise.
*          The distributed diagonal elements of the bidiagonal matrix
*          B: D(i) = A(ia+i-1,ja+i-1). D is tied to the distributed
*          matrix A.
*
*  E       (local output) DOUBLE PRECISION array, dimension
*          LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
*          The distributed off-diagonal elements of the bidiagonal
*          distributed matrix B:
*          if m >= n, E(i) = A(ia+i-1,ja+i) for i = 1,2,...,n-1;
*          if m < n, E(i) = A(ia+i,ja+i-1) for i = 1,2,...,m-1.
*          E is tied to the distributed matrix A.
*
*  TAUQ    (local output) COMPLEX*16 array dimension
*          LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary
*          reflectors which represent the unitary matrix Q. TAUQ is
*          tied to the distributed matrix A. See Further Details.
*
*  TAUP    (local output) COMPLEX*16 array, dimension
*          LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary
*          reflectors which represent the unitary matrix P. TAUP is
*          tied to the distributed matrix A. See Further Details.
*
*  X       (local output) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_X,NB). On exit, the local
*          pieces of the distributed M-by-NB matrix
*          X(IX:IX+M-1,JX:JX+NB-1) required to update the unreduced
*          part of sub( A ).
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  Y       (local output) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_Y,NB).  On exit, the local
*          pieces of the distributed N-by-NB matrix
*          Y(IY:IY+N-1,JY:JY+NB-1) required to update the unreduced
*          part of sub( A ).
*
*  IY      (global input) INTEGER
*          The row index in the global array Y indicating the first
*          row of sub( Y ).
*
*  JY      (global input) INTEGER
*          The column index in the global array Y indicating the
*          first column of sub( Y ).
*
*  DESCY   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Y.
*
*  WORK    (local workspace) COMPLEX*16 array, dimension (LWORK)
*          LWORK >= NB_A + NQ, with
*
*          NQ = NUMROC( N+MOD( IA-1, NB_Y ), NB_Y, MYCOL, IACOL, NPCOL )
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*  Further Details
*  ===============
*
*  The matrices Q and P are represented as products of elementary
*  reflectors:
*
*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
*
*  Each H(i) and G(i) has the form:
*
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
*
*  where tauq and taup are complex scalars, and v and u are complex
*  vectors.
*
*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
*  A(ia+i-1:ia+m-1,ja+i-1); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is
*  stored on exit in A(ia+i-1,ja+i:ja+n-1); tauq is stored in
*  TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
*
*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
*  A(ia+i+1:ia+m-1,ja+i-1); u(1:i-1) = 0, u(i) = 1, and u(i:n) is
*  stored on exit in A(ia+i-1,ja+i:ja+n-1); tauq is stored in
*  TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
*
*  The elements of the vectors v and u together form the m-by-nb matrix
*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
*  the transformation to the unreduced part of the matrix, using a block
*  update of the form:  sub( A ) := sub( A ) - V*Y' - X*U'.
*
*  The contents of sub( A ) on exit are illustrated by the following
*  examples with nb = 2:
*
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
*
*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
*    (  v1  v2  a   a   a  )
*
*  where a denotes an element of the original matrix which is unchanged,
*  vi denotes an element of the vector defining H(i), and ui an element
*  of the vector defining G(i).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX*16         ONE, ZERO
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IACOL, IAROW, ICTXT, II, IPY, IW, J, JJ,
     $                   JWY, K, MYCOL, MYROW, NPCOL, NPROW
      COMPLEX*16         ALPHA, TAU
      INTEGER            DESCD( DLEN_ ), DESCE( DLEN_ ),
     $                   DESCTP( DLEN_ ), DESCTQ( DLEN_ ),
     $                   DESCW( DLEN_ ), DESCWY( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, INFOG2L, PDELSET,
     $                   PZCOPY, PZELGET, PZELSET, PZGEMV,
     $                   PZLACGV, PZLARFG, PZSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
     $              IAROW, IACOL )
      IPY = DESCA( MB_ ) + 1
      IW = MOD( IA-1, DESCA( NB_ ) ) + 1
      ALPHA = ZERO
*
      CALL DESCSET( DESCWY, 1, N+MOD( IA-1, DESCY( NB_ ) ), 1,
     $              DESCA( NB_ ), IAROW, IACOL, ICTXT, 1 )
      CALL DESCSET( DESCW, DESCA( MB_ ), 1, DESCA( MB_ ), 1, IAROW,
     $              IACOL, ICTXT, DESCA( MB_ ) )
      CALL DESCSET( DESCTQ, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), IAROW,
     $              DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
      CALL DESCSET( DESCTP, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
     $              DESCA( RSRC_ ), IACOL, DESCA( CTXT_ ),
     $              DESCA( LLD_ ) )
*
      IF( M.GE.N ) THEN
*
*        Reduce to upper bidiagonal form
*
         CALL DESCSET( DESCD, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), MYROW,
     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
         CALL DESCSET( DESCE, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
     $                 DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
     $                 DESCA( LLD_ ) )
         DO 10 K = 1, NB
            I = IA + K - 1
            J = JA + K - 1
            JWY = IW + K
*
*           Update A(i:ia+m-1,j)
*
            IF( K.GT.1 ) THEN
               CALL PZGEMV( 'No transpose', M-K+1, K-1, -ONE, A, I, JA,
     $                      DESCA, Y, IY, JY+K-1, DESCY, 1, ONE, A, I,
     $                      J, DESCA, 1 )
               CALL PZGEMV( 'No transpose', M-K+1, K-1, -ONE, X, IX+K-1,
     $                      JX, DESCX, A, IA, J, DESCA, 1, ONE, A, I, J,
     $                      DESCA, 1 )
               CALL PZELSET( A, I-1, J, DESCA, ALPHA )
            END IF
*
*           Generate reflection Q(i) to annihilate A(i+1:ia+m-1,j)
*
            CALL PZLARFG( M-K+1, ALPHA, I, J, A, I+1, J, DESCA, 1,
     $                    TAUQ )
            CALL PDELSET( D, 1, J, DESCD, DBLE( ALPHA ) )
            CALL PZELSET( A, I, J, DESCA, ONE )
*
*           Compute Y(IA+I:IA+N-1,J)
*
            CALL PZGEMV( 'Conjugate transpose', M-K+1, N-K, ONE, A, I,
     $                   J+1, DESCA, A, I, J, DESCA, 1, ZERO,
     $                   WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
            CALL PZGEMV( 'Conjugate transpose', M-K+1, K-1, ONE, A, I,
     $                   JA, DESCA, A, I, J, DESCA, 1, ZERO, WORK, IW,
     $                   1, DESCW, 1 )
            CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, Y, IY,
     $                   JY+K, DESCY, WORK, IW, 1, DESCW, 1, ONE,
     $                   WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
            CALL PZGEMV( 'Conjugate transpose', M-K+1, K-1, ONE, X,
     $                   IX+K-1, JX, DESCX, A, I, J, DESCA, 1, ZERO,
     $                   WORK, IW, 1, DESCW, 1 )
            CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, A, IA,
     $                   J+1, DESCA, WORK, IW, 1, DESCW, 1, ONE,
     $                   WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
*
            CALL PZELGET( 'Rowwise', ' ', TAU, TAUQ, 1, J, DESCTQ )
            CALL PZSCAL( N-K, TAU, WORK( IPY ), 1, JWY, DESCWY,
     $                   DESCWY( M_ ) )
            CALL PZLACGV( N-K, WORK( IPY ), 1, JWY, DESCWY,
     $                    DESCWY( M_ ) )
            CALL PZCOPY( N-K, WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ),
     $                   Y, IY+K-1, JY+K, DESCY, DESCY( M_ ) )
*
*           Update A(i,j+1:ja+n-1)
*
            CALL PZLACGV( N-K, A, I, J+1, DESCA, DESCA( M_ ) )
            CALL PZLACGV( K, A, I, JA, DESCA, DESCA( M_ ) )
            CALL PZGEMV( 'Conjugate transpose', K, N-K, -ONE, Y, IY,
     $                   JY+K, DESCY, A, I, JA, DESCA, DESCA( M_ ), ONE,
     $                   A, I, J+1, DESCA, DESCA( M_ ) )
            CALL PZLACGV( K, A, I, JA, DESCA, DESCA( M_ ) )
            CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
            CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, A, IA,
     $                   J+1, DESCA, X, IX+K-1, JX, DESCX, DESCX( M_ ),
     $                   ONE, A, I, J+1, DESCA, DESCA( M_ ) )
            CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
            CALL PZELSET( A, I, J, DESCA, DCMPLX( DBLE( ALPHA ) ) )
*
*           Generate reflection P(i) to annihilate A(i,j+2:ja+n-1)
*
            CALL PZLARFG( N-K, ALPHA, I, J+1, A, I,
     $                    MIN( J+2, N+JA-1 ), DESCA, DESCA( M_ ), TAUP )
            CALL PDELSET( E, I, 1, DESCE, DBLE( ALPHA ) )
            CALL PZELSET( A, I, J+1, DESCA, ONE )
*
*           Compute X(I+1:IA+M-1,J)
*
            CALL PZGEMV( 'No transpose', M-K, N-K, ONE, A, I+1, J+1,
     $                   DESCA, A, I, J+1, DESCA, DESCA( M_ ), ZERO, X,
     $                   IX+K, JX+K-1, DESCX, 1 )
            CALL PZGEMV( 'No transpose', K, N-K, ONE, Y, IY, JY+K,
     $                   DESCY, A, I, J+1, DESCA, DESCA( M_ ), ZERO,
     $                   WORK, IW, 1, DESCW, 1 )
            CALL PZGEMV( 'No transpose', M-K, K, -ONE, A, I+1, JA,
     $                   DESCA, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
     $                   JX+K-1, DESCX, 1 )
            CALL PZGEMV( 'No transpose', K-1, N-K, ONE, A, IA, J+1,
     $                   DESCA, A, I, J+1, DESCA, DESCA( M_ ), ZERO,
     $                   WORK, IW, 1, DESCW, 1 )
            CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, X, IX+K, JX,
     $                   DESCX, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
     $                   JX+K-1, DESCX, 1 )
*
            CALL PZELGET( 'Columnwise', ' ', TAU, TAUP, I, 1, DESCTP )
            CALL PZSCAL( M-K, TAU, X, IX+K, JX+K-1, DESCX, 1 )
            CALL PZLACGV( N-K, A, I, J+1, DESCA, DESCA( M_ ) )
   10    CONTINUE
*
      ELSE
*
*        Reduce to lower bidiagonal form
*
         CALL DESCSET( DESCD, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
     $                 DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
     $                 DESCA( LLD_ ) )
         CALL DESCSET( DESCE, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), MYROW,
     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
         DO 20 K = 1, NB
            I = IA + K - 1
            J = JA + K - 1
            JWY = IW + K
*
*           Update A(i,j:ja+n-1)
*
            CALL PZLACGV( N-K+1, A, I, J, DESCA, DESCA( M_ ) )
            IF( K.GT.1 ) THEN
               CALL PZLACGV( K-1, A, I, JA, DESCA, DESCA( M_ ) )
               CALL PZGEMV( 'Conjugate transpose', K-1, N-K+1, -ONE, Y,
     $                      IY, JY+K-1, DESCY, A, I, JA, DESCA,
     $                      DESCA( M_ ), ONE, A, I, J, DESCA,
     $                      DESCA( M_ ) )
               CALL PZLACGV( K-1, A, I, JA, DESCA, DESCA( M_ ) )
               CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
               CALL PZGEMV( 'Conjugate transpose', K-1, N-K+1, -ONE, A,
     $                      IA, J, DESCA, X, IX+K-1, JX, DESCX,
     $                      DESCX( M_ ), ONE, A, I, J, DESCA,
     $                      DESCA( M_ ) )
               CALL PZLACGV( K-1, X, IX+K-1, JX, DESCX, DESCX( M_ ) )
               CALL PZELSET( A, I, J-1, DESCA, DCMPLX( DBLE( ALPHA ) ) )
            END IF
*
*           Generate reflection P(i) to annihilate A(i,j+1:ja+n-1)
*
            CALL PZLARFG( N-K+1, ALPHA, I, J, A, I, J+1, DESCA,
     $                    DESCA( M_ ), TAUP )
            CALL PDELSET( D, I, 1, DESCD, DBLE( ALPHA ) )
            CALL PZELSET( A, I, J, DESCA, ONE )
*
*           Compute X(i+1:ia+m-1,j)
*
            CALL PZGEMV( 'No transpose', M-K, N-K+1, ONE, A, I+1, J,
     $                   DESCA, A, I, J, DESCA, DESCA( M_ ), ZERO, X,
     $                   IX+K, JX+K-1, DESCX, 1 )
            CALL PZGEMV( 'No transpose', K-1, N-K+1, ONE, Y, IY, JY+K-1,
     $                   DESCY, A, I, J, DESCA, DESCA( M_ ), ZERO,
     $                   WORK, IW, 1, DESCW, 1 )
            CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, A, I+1, JA,
     $                   DESCA, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
     $                   JX+K-1, DESCX, 1 )
            CALL PZGEMV( 'No transpose', K-1, N-K+1, ONE, A, IA, J,
     $                   DESCA, A, I, J, DESCA, DESCA( M_ ), ZERO,
     $                   WORK, IW, 1, DESCW, 1 )
            CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, X, IX+K, JX,
     $                   DESCX, WORK, IW, 1, DESCW, 1, ONE, X, IX+K,
     $                   JX+K-1, DESCX, 1 )
*
            CALL PZELGET( 'Columnwise', ' ', TAU, TAUP, I, 1, DESCTP )
            CALL PZSCAL( M-K, TAU, X, IX+K, JX+K-1, DESCX, 1 )
            CALL PZLACGV( N-K+1, A, I, J, DESCA, DESCA( M_ ) )
*
*           Update A(i+1:ia+m-1,j)
*
            CALL PZGEMV( 'No transpose', M-K, K-1, -ONE, A, I+1, JA,
     $                   DESCA, Y, IY, JY+K-1, DESCY, 1, ONE, A, I+1, J,
     $                   DESCA, 1 )
            CALL PZGEMV( 'No transpose', M-K, K, -ONE, X, IX+K, JX,
     $                   DESCX, A, IA, J, DESCA, 1, ONE, A, I+1, J,
     $                   DESCA, 1 )
            CALL PZELSET( A, I, J, DESCA, ALPHA )
*
*           Generate reflection Q(i) to annihilate A(i+2:ia+m-1,j)
*
            CALL PZLARFG( M-K, ALPHA, I+1, J, A, MIN( I+2, M+IA-1 ),
     $                    J, DESCA, 1, TAUQ )
            CALL PDELSET( E, 1, J, DESCE, DBLE( ALPHA ) )
            CALL PZELSET( A, I+1, J, DESCA, ONE )
*
*           Compute Y(ia+i:ia+n-1,j)
*
            CALL PZGEMV( 'Conjugate transpose', M-K, N-K, ONE, A, I+1,
     $                   J+1, DESCA, A, I+1, J, DESCA, 1, ZERO,
     $                   WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
            CALL PZGEMV( 'Conjugate transpose', M-K, K-1, ONE, A, I+1,
     $                   JA, DESCA, A, I+1, J, DESCA, 1, ZERO, WORK, IW,
     $                   1, DESCW, 1 )
            CALL PZGEMV( 'Conjugate transpose', K-1, N-K, -ONE, Y, IY,
     $                   JY+K, DESCY, WORK, IW, 1, DESCW, 1, ONE,
     $                   WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
            CALL PZGEMV( 'Conjugate transpose', M-K, K, ONE, X, IX+K,
     $                   JX, DESCX, A, I+1, J, DESCA, 1, ZERO, WORK, IW,
     $                   1, DESCW, 1 )
            CALL PZGEMV( 'Conjugate transpose', K, N-K, -ONE, A, IA,
     $                   J+1, DESCA, WORK, IW, 1, DESCW, 1, ONE,
     $                   WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ) )
*
            CALL PZELGET( 'Rowwise', ' ', TAU, TAUQ, 1, J, DESCTQ )
            CALL PZSCAL( N-K, TAU, WORK( IPY ), 1, JWY, DESCWY,
     $                   DESCWY( M_ ) )
            CALL PZLACGV( N-K, WORK( IPY ), 1, JWY, DESCWY,
     $                    DESCWY( M_ ) )
            CALL PZCOPY( N-K, WORK( IPY ), 1, JWY, DESCWY, DESCWY( M_ ),
     $                   Y, IY+K-1, JY+K, DESCY, DESCY( M_ ) )
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of PZLABRD
*
      END