1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
SUBROUTINE PZLACP3( M, I, A, DESCA, B, LDB, II, JJ, REV )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* July 31, 2001
*
* .. Scalar Arguments ..
INTEGER I, II, JJ, LDB, M, REV
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
COMPLEX*16 A( * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PZLACP3 is an auxiliary routine that copies from a global parallel
* array into a local replicated array or vise versa. Notice that
* the entire submatrix that is copied gets placed on one node or
* more. The receiving node can be specified precisely, or all nodes
* can receive, or just one row or column of nodes.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* M is the order of the square submatrix that is copied.
* M >= 0.
* Unchanged on exit
*
* I (global input) INTEGER
* A(I,I) is the global location that the copying starts from.
* Unchanged on exit.
*
* A (global input/output) COMPLEX*16 array, dimension
* (DESCA(LLD_),*)
* On entry, the parallel matrix to be copied into or from.
* On exit, if REV=1, the copied data.
* Unchanged on exit if REV=0.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* B (local input/output) COMPLEX*16 array of size (LDB,M)
* If REV=0, this is the global portion of the array
* A(I:I+M-1,I:I+M-1).
* If REV=1, this is the unchanged on exit.
*
* LDB (local input) INTEGER
* The leading dimension of B.
*
* II (global input) INTEGER
* By using REV 0 & 1, data can be sent out and returned again.
* If REV=0, then II is destination row index for the node(s)
* receiving the replicated B.
* If II>=0,JJ>=0, then node (II,JJ) receives the data
* If II=-1,JJ>=0, then all rows in column JJ receive the
* data
* If II>=0,JJ=-1, then all cols in row II receive the data
* If II=-1,JJ=-1, then all nodes receive the data
* If REV<>0, then II is the source row index for the node(s)
* sending the replicated B.
*
* JJ (global input) INTEGER
* Similar description as II above
*
* REV (global input) INTEGER
* Use REV = 0 to send global A into locally replicated B
* (on node (II,JJ)).
* Use REV <> 0 to send locally replicated B from node (II,JJ)
* to its owner (which changes depending on its location in
* A) into the global A.
*
* Further Details
* ===============
*
* Implemented by: M. Fahey, May 28, 1999
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER COL, CONTXT, HBL, ICOL1, ICOL2, IDI, IDJ, IFIN,
$ III, IROW1, IROW2, ISTOP, ISTOPI, ISTOPJ, ITMP,
$ JJJ, LDA, MYCOL, MYROW, NPCOL, NPROW, ROW
* ..
* .. External Functions ..
INTEGER NUMROC
EXTERNAL NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG1L, ZGEBR2D, ZGEBS2D,
$ ZGERV2D, ZGESD2D
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD
* ..
* .. Executable Statements ..
*
IF( M.LE.0 )
$ RETURN
*
HBL = DESCA( MB_ )
CONTXT = DESCA( CTXT_ )
LDA = DESCA( LLD_ )
*
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IF( REV.EQ.0 ) THEN
DO 20 IDI = 1, M
DO 10 IDJ = 1, M
B( IDI, IDJ ) = ZERO
10 CONTINUE
20 CONTINUE
END IF
*
IFIN = I + M - 1
*
IF( MOD( I+HBL, HBL ).NE.0 ) THEN
ISTOP = MIN( I+HBL-MOD( I+HBL, HBL ), IFIN )
ELSE
ISTOP = I
END IF
IDJ = I
ISTOPJ = ISTOP
IF( IDJ.LE.IFIN ) THEN
30 CONTINUE
IDI = I
ISTOPI = ISTOP
IF( IDI.LE.IFIN ) THEN
40 CONTINUE
ROW = MOD( ( IDI-1 ) / HBL, NPROW )
COL = MOD( ( IDJ-1 ) / HBL, NPCOL )
CALL INFOG1L( IDI, HBL, NPROW, ROW, 0, IROW1, ITMP )
IROW2 = NUMROC( ISTOPI, HBL, ROW, 0, NPROW )
CALL INFOG1L( IDJ, HBL, NPCOL, COL, 0, ICOL1, ITMP )
ICOL2 = NUMROC( ISTOPJ, HBL, COL, 0, NPCOL )
IF( ( MYROW.EQ.ROW ) .AND. ( MYCOL.EQ.COL ) ) THEN
IF( ( II.EQ.-1 ) .AND. ( JJ.EQ.-1 ) ) THEN
*
* Send the message to everyone
*
IF( REV.EQ.0 ) THEN
CALL ZGEBS2D( CONTXT, 'All', ' ', IROW2-IROW1+1,
$ ICOL2-ICOL1+1, A( ( ICOL1-1 )*LDA+
$ IROW1 ), LDA )
END IF
END IF
IF( ( II.EQ.-1 ) .AND. ( JJ.NE.-1 ) ) THEN
*
* Send the message to Column MYCOL which better be JJ
*
IF( REV.EQ.0 ) THEN
CALL ZGEBS2D( CONTXT, 'Col', ' ', IROW2-IROW1+1,
$ ICOL2-ICOL1+1, A( ( ICOL1-1 )*LDA+
$ IROW1 ), LDA )
END IF
END IF
IF( ( II.NE.-1 ) .AND. ( JJ.EQ.-1 ) ) THEN
*
* Send the message to Row MYROW which better be II
*
IF( REV.EQ.0 ) THEN
CALL ZGEBS2D( CONTXT, 'Row', ' ', IROW2-IROW1+1,
$ ICOL2-ICOL1+1, A( ( ICOL1-1 )*LDA+
$ IROW1 ), LDA )
END IF
END IF
IF( ( II.NE.-1 ) .AND. ( JJ.NE.-1 ) .AND.
$ ( ( MYROW.NE.II ) .OR. ( MYCOL.NE.JJ ) ) ) THEN
*
* Recv/Send the message to (II,JJ)
*
IF( REV.EQ.0 ) THEN
CALL ZGESD2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
$ A( ( ICOL1-1 )*LDA+IROW1 ), LDA, II,
$ JJ )
ELSE
CALL ZGERV2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
$ B( IDI-I+1, IDJ-I+1 ), LDB, II, JJ )
END IF
END IF
IF( REV.EQ.0 ) THEN
DO 60 JJJ = ICOL1, ICOL2
DO 50 III = IROW1, IROW2
B( IDI+III-IROW1+1-I, IDJ+JJJ-ICOL1+1-I )
$ = A( ( JJJ-1 )*LDA+III )
50 CONTINUE
60 CONTINUE
ELSE
DO 80 JJJ = ICOL1, ICOL2
DO 70 III = IROW1, IROW2
A( ( JJJ-1 )*LDA+III ) = B( IDI+III-IROW1+1-I,
$ IDJ+JJJ-ICOL1+1-I )
70 CONTINUE
80 CONTINUE
END IF
ELSE
IF( ( II.EQ.-1 ) .AND. ( JJ.EQ.-1 ) ) THEN
IF( REV.EQ.0 ) THEN
CALL ZGEBR2D( CONTXT, 'All', ' ', IROW2-IROW1+1,
$ ICOL2-ICOL1+1, B( IDI-I+1, IDJ-I+1 ),
$ LDB, ROW, COL )
END IF
END IF
IF( ( II.EQ.-1 ) .AND. ( JJ.EQ.MYCOL ) ) THEN
IF( REV.EQ.0 ) THEN
CALL ZGEBR2D( CONTXT, 'Col', ' ', IROW2-IROW1+1,
$ ICOL2-ICOL1+1, B( IDI-I+1, IDJ-I+1 ),
$ LDB, ROW, COL )
END IF
END IF
IF( ( II.EQ.MYROW ) .AND. ( JJ.EQ.-1 ) ) THEN
IF( REV.EQ.0 ) THEN
CALL ZGEBR2D( CONTXT, 'Row', ' ', IROW2-IROW1+1,
$ ICOL2-ICOL1+1, B( IDI-I+1, IDJ-I+1 ),
$ LDB, ROW, COL )
END IF
END IF
IF( ( II.EQ.MYROW ) .AND. ( JJ.EQ.MYCOL ) ) THEN
IF( REV.EQ.0 ) THEN
CALL ZGERV2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
$ B( IDI-I+1, IDJ-I+1 ), LDB, ROW,
$ COL )
ELSE
CALL ZGESD2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
$ B( IDI-I+1, IDJ-I+1 ), LDB, ROW,
$ COL )
* CALL ZGESD2D(CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
* $ A((ICOL1-1)*LDA+IROW1),LDA, ROW, COL)
END IF
END IF
END IF
IDI = ISTOPI + 1
ISTOPI = MIN( ISTOPI+HBL, IFIN )
IF( IDI.LE.IFIN )
$ GO TO 40
END IF
IDJ = ISTOPJ + 1
ISTOPJ = MIN( ISTOPJ+HBL, IFIN )
IF( IDJ.LE.IFIN )
$ GO TO 30
END IF
RETURN
*
* End of PZLACP3
*
END
|