1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
*
*
SUBROUTINE PZLAEVSWP( N, ZIN, LDZI, Z, IZ, JZ, DESCZ, NVS, KEY,
$ RWORK, LRWORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 15, 1997
*
* .. Scalar Arguments ..
INTEGER IZ, JZ, LDZI, LRWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCZ( * ), KEY( * ), NVS( * )
DOUBLE PRECISION RWORK( * ), ZIN( LDZI, * )
COMPLEX*16 Z( * )
* ..
*
* Purpose
* =======
*
* PZLAEVSWP moves the eigenvectors (potentially unsorted) from
* where they are computed, to a ScaLAPACK standard block cyclic
* array, sorted so that the corresponding eigenvalues are sorted.
*
* Notes
* =====
*
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
* Arguments
* =========
*
* NP = the number of rows local to a given process.
* NQ = the number of columns local to a given process.
*
* N (global input) INTEGER
* The order of the matrix A. N >= 0.
*
* ZIN (local input) DOUBLE PRECISION array,
* dimension ( LDZI, NVS(iam) )
* The eigenvectors on input. Each eigenvector resides entirely
* in one process. Each process holds a contiguous set of
* NVS(iam) eigenvectors. The first eigenvector which the
* process holds is: sum for i=[0,iam-1) of NVS(i)
*
* LDZI (locl input) INTEGER
* leading dimension of the ZIN array
*
* Z (local output) COMPLEX*16 array
* global dimension (N, N), local dimension (DESCZ(DLEN_), NQ)
* The eigenvectors on output. The eigenvectors are distributed
* in a block cyclic manner in both dimensions, with a
* block size of NB.
*
* IZ (global input) INTEGER
* Z's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JZ (global input) INTEGER
* Z's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* NVS (global input) INTEGER array, dimension( nprocs+1 )
* nvs(i) = number of processes
* number of eigenvectors held by processes [0,i-1)
* nvs(1) = number of eigen vectors held by [0,1-1) == 0
* nvs(nprocs+1) = number of eigen vectors held by [0,nprocs) ==
* total number of eigenvectors
*
* KEY (global input) INTEGER array, dimension( N )
* Indicates the actual index (after sorting) for each of the
* eigenvectors.
*
* RWORK (local workspace) DOUBLE PRECISION array, dimension (LRWORK)
*
* LRWORK (local input) INTEGER dimension of RWORK
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER CYCLIC_I, CYCLIC_J, DIST, I, IAM, II, INCII, J,
$ MAXI, MAXII, MINI, MINII, MYCOL, MYROW, NB,
$ NBUFSIZE, NPCOL, NPROCS, NPROW, PCOL, RECVCOL,
$ RECVFROM, RECVROW, SENDCOL, SENDROW, SENDTO
* ..
* .. External Functions ..
INTEGER INDXG2L, INDXG2P
EXTERNAL INDXG2L, INDXG2P
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DGERV2D, DGESD2D
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN, MOD
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
CALL BLACS_GRIDINFO( DESCZ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
IAM = MYROW + MYCOL*NPROW
IAM = MYROW*NPCOL + MYCOL
*
NB = DESCZ( MB_ )
*
NPROCS = NPROW*NPCOL
*
* If PxSTEIN operates on a sub-matrix of a global matrix, the
* key [] that contains the indicies of the eigenvectors is refe-
* renced to the dimensions of the sub-matrix and not the global
* distrubited matrix. Because of this, PxLAEVSWP will incorrectly
* map the eigenvectors to the global eigenvector matrix, Z, unless
* the key[] elements are shifted as below.
*
DO 10 J = DESCZ( N_ ), 1, -1
KEY( J ) = KEY( J-JZ+1 ) + ( JZ-1 )
10 CONTINUE
*
DO 110 DIST = 0, NPROCS - 1
*
SENDTO = MOD( IAM+DIST, NPROCS )
RECVFROM = MOD( NPROCS+IAM-DIST, NPROCS )
*
SENDROW = MOD( SENDTO, NPROW )
SENDCOL = SENDTO / NPROW
RECVROW = MOD( RECVFROM, NPROW )
RECVCOL = RECVFROM / NPROW
*
SENDROW = SENDTO / NPCOL
SENDCOL = MOD( SENDTO, NPCOL )
RECVROW = RECVFROM / NPCOL
RECVCOL = MOD( RECVFROM, NPCOL )
*
* Figure out what I have that process "sendto" wants
*
NBUFSIZE = 0
*
* We are looping through the eigenvectors that I presently own.
*
DO 40 J = NVS( 1+IAM ) + JZ, NVS( 1+IAM+1 ) + JZ - 1
PCOL = INDXG2P( KEY( J ), DESCZ( NB_ ), -1, DESCZ( CSRC_ ),
$ NPCOL )
IF( SENDCOL.EQ.PCOL ) THEN
MINII = MOD( SENDROW+DESCZ( RSRC_ ), NPROW )*
$ DESCZ( MB_ ) + 1
MAXII = DESCZ( M_ )
INCII = DESCZ( MB_ )*NPROW
DO 30 II = MINII, MAXII, INCII
MINI = MAX( II, IZ )
MAXI = MIN( II+DESCZ( MB_ )-1, N+IZ-1 )
DO 20 I = MINI, MAXI, 1
NBUFSIZE = NBUFSIZE + 1
RWORK( NBUFSIZE ) = ZIN( I+1-IZ,
$ J-NVS( 1+IAM )+1-JZ )
20 CONTINUE
30 CONTINUE
END IF
40 CONTINUE
*
*
IF( MYROW.NE.SENDROW .OR. MYCOL.NE.SENDCOL )
$ CALL DGESD2D( DESCZ( CTXT_ ), NBUFSIZE, 1, RWORK, NBUFSIZE,
$ SENDROW, SENDCOL )
*
*
* Figure out what process "recvfrom" has that I want
*
NBUFSIZE = 0
DO 70 J = NVS( 1+RECVFROM ) + JZ,
$ NVS( 1+RECVFROM+1 ) + JZ - 1, 1
PCOL = INDXG2P( KEY( J ), DESCZ( NB_ ), -1, DESCZ( CSRC_ ),
$ NPCOL )
IF( MYCOL.EQ.PCOL ) THEN
MINII = MOD( MYROW+DESCZ( RSRC_ ), NPROW )*DESCZ( MB_ ) +
$ 1
MAXII = DESCZ( M_ )
INCII = DESCZ( MB_ )*NPROW
DO 60 II = MINII, MAXII, INCII
MINI = MAX( II, IZ )
MAXI = MIN( II+NB-1, N+IZ-1 )
DO 50 I = MINI, MAXI, 1
NBUFSIZE = NBUFSIZE + 1
50 CONTINUE
60 CONTINUE
END IF
70 CONTINUE
*
*
*
IF( MYROW.NE.RECVROW .OR. MYCOL.NE.RECVCOL )
$ CALL DGERV2D( DESCZ( CTXT_ ), 1, NBUFSIZE, RWORK, 1,
$ RECVROW, RECVCOL )
*
NBUFSIZE = 0
DO 100 J = NVS( 1+RECVFROM ) + JZ,
$ NVS( 1+RECVFROM+1 ) + JZ - 1, 1
PCOL = INDXG2P( KEY( J ), DESCZ( NB_ ), -1, DESCZ( CSRC_ ),
$ NPCOL )
IF( MYCOL.EQ.PCOL ) THEN
CYCLIC_J = INDXG2L( KEY( J ), DESCZ( MB_ ), -1, -1,
$ NPCOL )
CYCLIC_I = 1
MINII = MOD( MYROW+DESCZ( RSRC_ ), NPROW )*DESCZ( MB_ ) +
$ 1
MAXII = DESCZ( M_ )
INCII = DESCZ( MB_ )*NPROW
DO 90 II = MINII, MAXII, INCII
MINI = MAX( II, IZ )
CYCLIC_I = INDXG2L( MINI, DESCZ( MB_ ), -1, -1,
$ NPROW )
MAXI = MIN( II+NB-1, N+IZ-1 )
DO 80 I = MINI, MAXI, 1
NBUFSIZE = NBUFSIZE + 1
Z( CYCLIC_I+( CYCLIC_J-1 )*DESCZ( LLD_ ) )
$ = DCMPLX( RWORK( NBUFSIZE ) )
CYCLIC_I = CYCLIC_I + 1
80 CONTINUE
90 CONTINUE
END IF
100 CONTINUE
*
110 CONTINUE
RETURN
*
* End of PZLAEVSWP
*
END
|