File: pzlaevswp.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (287 lines) | stat: -rw-r--r-- 11,255 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
*
*
      SUBROUTINE PZLAEVSWP( N, ZIN, LDZI, Z, IZ, JZ, DESCZ, NVS, KEY,
     $                      RWORK, LRWORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 15, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IZ, JZ, LDZI, LRWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCZ( * ), KEY( * ), NVS( * )
      DOUBLE PRECISION   RWORK( * ), ZIN( LDZI, * )
      COMPLEX*16         Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLAEVSWP moves the eigenvectors (potentially unsorted) from
*  where they are computed, to a ScaLAPACK standard block cyclic
*  array, sorted so that the corresponding eigenvalues are sorted.
*
*  Notes
*  =====
*
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  Arguments
*  =========
*
*     NP = the number of rows local to a given process.
*     NQ = the number of columns local to a given process.
*
*  N       (global input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  ZIN     (local input) DOUBLE PRECISION array,
*          dimension ( LDZI, NVS(iam) )
*          The eigenvectors on input.  Each eigenvector resides entirely
*          in one process.  Each process holds a contiguous set of
*          NVS(iam) eigenvectors.  The first eigenvector which the
*          process holds is:  sum for i=[0,iam-1) of NVS(i)
*
*  LDZI    (locl input) INTEGER
*          leading dimension of the ZIN array
*
*  Z       (local output) COMPLEX*16 array
*          global dimension (N, N), local dimension (DESCZ(DLEN_), NQ)
*          The eigenvectors on output.  The eigenvectors are distributed
*          in a block cyclic manner in both dimensions, with a
*          block size of NB.
*
*  IZ      (global input) INTEGER
*          Z's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JZ      (global input) INTEGER
*          Z's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  NVS     (global input) INTEGER array, dimension( nprocs+1 )
*          nvs(i) = number of processes
*          number of eigenvectors held by processes [0,i-1)
*          nvs(1) = number of eigen vectors held by [0,1-1) == 0
*          nvs(nprocs+1) = number of eigen vectors held by [0,nprocs) ==
*            total number of eigenvectors
*
*  KEY     (global input) INTEGER array, dimension( N )
*          Indicates the actual index (after sorting) for each of the
*          eigenvectors.
*
*  RWORK    (local workspace) DOUBLE PRECISION array, dimension (LRWORK)
*
*  LRWORK   (local input) INTEGER dimension of RWORK
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            CYCLIC_I, CYCLIC_J, DIST, I, IAM, II, INCII, J,
     $                   MAXI, MAXII, MINI, MINII, MYCOL, MYROW, NB,
     $                   NBUFSIZE, NPCOL, NPROCS, NPROW, PCOL, RECVCOL,
     $                   RECVFROM, RECVROW, SENDCOL, SENDROW, SENDTO
*     ..
*     .. External Functions ..
      INTEGER            INDXG2L, INDXG2P
      EXTERNAL           INDXG2L, INDXG2P
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DGERV2D, DGESD2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
      CALL BLACS_GRIDINFO( DESCZ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
      IAM = MYROW + MYCOL*NPROW
      IAM = MYROW*NPCOL + MYCOL
*
      NB = DESCZ( MB_ )
*
      NPROCS = NPROW*NPCOL
*
*     If PxSTEIN operates on a sub-matrix of a global matrix, the
*     key [] that contains the indicies of the eigenvectors is refe-
*     renced to the dimensions of the sub-matrix and not the global
*     distrubited matrix. Because of this, PxLAEVSWP will incorrectly
*     map the eigenvectors to the global eigenvector matrix, Z, unless
*     the key[] elements are shifted as below.
*
      DO 10 J = DESCZ( N_ ), 1, -1
         KEY( J ) = KEY( J-JZ+1 ) + ( JZ-1 )
   10 CONTINUE
*
      DO 110 DIST = 0, NPROCS - 1
*
         SENDTO = MOD( IAM+DIST, NPROCS )
         RECVFROM = MOD( NPROCS+IAM-DIST, NPROCS )
*
         SENDROW = MOD( SENDTO, NPROW )
         SENDCOL = SENDTO / NPROW
         RECVROW = MOD( RECVFROM, NPROW )
         RECVCOL = RECVFROM / NPROW
*
         SENDROW = SENDTO / NPCOL
         SENDCOL = MOD( SENDTO, NPCOL )
         RECVROW = RECVFROM / NPCOL
         RECVCOL = MOD( RECVFROM, NPCOL )
*
*        Figure out what I have that process "sendto" wants
*
         NBUFSIZE = 0
*
*        We are looping through the eigenvectors that I presently own.
*
         DO 40 J = NVS( 1+IAM ) + JZ, NVS( 1+IAM+1 ) + JZ - 1
            PCOL = INDXG2P( KEY( J ), DESCZ( NB_ ), -1, DESCZ( CSRC_ ),
     $             NPCOL )
            IF( SENDCOL.EQ.PCOL ) THEN
               MINII = MOD( SENDROW+DESCZ( RSRC_ ), NPROW )*
     $                 DESCZ( MB_ ) + 1
               MAXII = DESCZ( M_ )
               INCII = DESCZ( MB_ )*NPROW
               DO 30 II = MINII, MAXII, INCII
                  MINI = MAX( II, IZ )
                  MAXI = MIN( II+DESCZ( MB_ )-1, N+IZ-1 )
                  DO 20 I = MINI, MAXI, 1
                     NBUFSIZE = NBUFSIZE + 1
                     RWORK( NBUFSIZE ) = ZIN( I+1-IZ,
     $                                   J-NVS( 1+IAM )+1-JZ )
   20             CONTINUE
   30          CONTINUE
            END IF
   40    CONTINUE
*
*
         IF( MYROW.NE.SENDROW .OR. MYCOL.NE.SENDCOL )
     $      CALL DGESD2D( DESCZ( CTXT_ ), NBUFSIZE, 1, RWORK, NBUFSIZE,
     $                    SENDROW, SENDCOL )
*
*
*        Figure out what process "recvfrom" has that I want
*
         NBUFSIZE = 0
         DO 70 J = NVS( 1+RECVFROM ) + JZ,
     $           NVS( 1+RECVFROM+1 ) + JZ - 1, 1
            PCOL = INDXG2P( KEY( J ), DESCZ( NB_ ), -1, DESCZ( CSRC_ ),
     $             NPCOL )
            IF( MYCOL.EQ.PCOL ) THEN
               MINII = MOD( MYROW+DESCZ( RSRC_ ), NPROW )*DESCZ( MB_ ) +
     $                 1
               MAXII = DESCZ( M_ )
               INCII = DESCZ( MB_ )*NPROW
               DO 60 II = MINII, MAXII, INCII
                  MINI = MAX( II, IZ )
                  MAXI = MIN( II+NB-1, N+IZ-1 )
                  DO 50 I = MINI, MAXI, 1
                     NBUFSIZE = NBUFSIZE + 1
   50             CONTINUE
   60          CONTINUE
            END IF
   70    CONTINUE
*
*
*
         IF( MYROW.NE.RECVROW .OR. MYCOL.NE.RECVCOL )
     $      CALL DGERV2D( DESCZ( CTXT_ ), 1, NBUFSIZE, RWORK, 1,
     $                    RECVROW, RECVCOL )
*
         NBUFSIZE = 0
         DO 100 J = NVS( 1+RECVFROM ) + JZ,
     $           NVS( 1+RECVFROM+1 ) + JZ - 1, 1
            PCOL = INDXG2P( KEY( J ), DESCZ( NB_ ), -1, DESCZ( CSRC_ ),
     $             NPCOL )
            IF( MYCOL.EQ.PCOL ) THEN
               CYCLIC_J = INDXG2L( KEY( J ), DESCZ( MB_ ), -1, -1,
     $                    NPCOL )
               CYCLIC_I = 1
               MINII = MOD( MYROW+DESCZ( RSRC_ ), NPROW )*DESCZ( MB_ ) +
     $                 1
               MAXII = DESCZ( M_ )
               INCII = DESCZ( MB_ )*NPROW
               DO 90 II = MINII, MAXII, INCII
                  MINI = MAX( II, IZ )
                  CYCLIC_I = INDXG2L( MINI, DESCZ( MB_ ), -1, -1,
     $                       NPROW )
                  MAXI = MIN( II+NB-1, N+IZ-1 )
                  DO 80 I = MINI, MAXI, 1
                     NBUFSIZE = NBUFSIZE + 1
                     Z( CYCLIC_I+( CYCLIC_J-1 )*DESCZ( LLD_ ) )
     $                  = DCMPLX( RWORK( NBUFSIZE ) )
                     CYCLIC_I = CYCLIC_I + 1
   80             CONTINUE
   90          CONTINUE
            END IF
  100    CONTINUE
*
  110 CONTINUE
      RETURN
*
*     End of PZLAEVSWP
*
      END