1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
|
DOUBLE PRECISION FUNCTION PZLANTR( NORM, UPLO, DIAG, M, N, A,
$ IA, JA, DESCA, WORK )
IMPLICIT NONE
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER IA, JA, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION WORK( * )
COMPLEX*16 A( * )
* ..
*
* Purpose
* =======
*
* PZLANTR returns the value of the one norm, or the Frobenius norm,
* or the infinity norm, or the element of largest absolute value of a
* trapezoidal or triangular distributed matrix sub( A ) denoting
* A(IA:IA+M-1, JA:JA+N-1).
*
* PZLANTR returns the value
*
* ( max(abs(A(i,j))), NORM = 'M' or 'm' with ia <= i <= ia+m-1,
* ( and ja <= j <= ja+n-1,
* (
* ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
* (
* ( normI( sub( A ) ), NORM = 'I' or 'i'
* (
* ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* NORM (global input) CHARACTER
* Specifies the value to be returned in PZLANTR as described
* above.
*
* UPLO (global input) CHARACTER
* Specifies whether the matrix sub( A ) is upper or lower
* trapezoidal.
* = 'U': Upper trapezoidal
* = 'L': Lower trapezoidal
* Note that sub( A ) is triangular instead of trapezoidal
* if M = N.
*
* DIAG (global input) CHARACTER
* Specifies whether or not the distributed matrix sub( A ) has
* unit diagonal.
* = 'N': Non-unit diagonal
* = 'U': Unit diagonal
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix sub( A ). When M = 0, PZLANTR is
* set to zero. M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( A ). When N = 0,
* PZLANTR is set to zero. N >= 0.
*
* A (local input) COMPLEX*16 pointer into the local memory
* to an array of dimension (LLD_A, LOCc(JA+N-1) ) containing
* the local pieces of sub( A ).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WORK (local workspace) DOUBLE PRECISION array dimension (LWORK)
* LWORK >= 0 if NORM = 'M' or 'm' (not referenced),
* Nq0 if NORM = '1', 'O' or 'o',
* Mp0 if NORM = 'I' or 'i',
* 0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
* where
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
* MYCOL, NPROW and NPCOL can be determined by calling the
* subroutine BLACS_GRIDINFO.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UDIAG
INTEGER IACOL, IAROW, ICTXT, II, IIA, ICOFF, IOFFA,
$ IROFF, J, JB, JJ, JJA, JN, KK, LDA, LL, MP,
$ MYCOL, MYROW, NP, NPCOL, NPROW, NQ
DOUBLE PRECISION SUM, VALUE
* ..
* .. Local Arrays ..
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DCOMBSSQ, DGEBR2D,
$ DGEBS2D, DGAMX2D, DGSUM2D, INFOG2L,
$ PDTREECOMB, ZLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, IDAMAX, NUMROC
EXTERNAL LSAME, ICEIL, IDAMAX, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
UDIAG = LSAME( DIAG, 'U' )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYROW.EQ.IAROW )
$ MP = MP - IROFF
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFF
LDA = DESCA( LLD_ )
IOFFA = ( JJA - 1 ) * LDA
*
IF( MIN( M, N ).EQ.0 ) THEN
*
VALUE = ZERO
*
************************************************************************
* max norm
*
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
IF( UDIAG ) THEN
VALUE = ONE
ELSE
VALUE = ZERO
END IF
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Upper triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 20 LL = JJ, JJ + JB -1
DO 10 KK = IIA, MIN(II+LL-JJ-1,IIA+MP-1)
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
10 CONTINUE
IOFFA = IOFFA + LDA
20 CONTINUE
ELSE
DO 40 LL = JJ, JJ + JB -1
DO 30 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
30 CONTINUE
IOFFA = IOFFA + LDA
40 CONTINUE
END IF
ELSE
DO 60 LL = JJ, JJ + JB -1
DO 50 KK = IIA, MIN( II-1, IIA+MP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
50 CONTINUE
IOFFA = IOFFA + LDA
60 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 130 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 80 LL = JJ, JJ + JB -1
DO 70 KK = IIA, MIN( II+LL-JJ-1, IIA+MP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
70 CONTINUE
IOFFA = IOFFA + LDA
80 CONTINUE
ELSE
DO 100 LL = JJ, JJ + JB -1
DO 90 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
90 CONTINUE
IOFFA = IOFFA + LDA
100 CONTINUE
END IF
ELSE
DO 120 LL = JJ, JJ + JB -1
DO 110 KK = IIA, MIN( II-1, IIA+MP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
110 CONTINUE
IOFFA = IOFFA + LDA
120 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
130 CONTINUE
*
ELSE
*
* Lower triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 150 LL = JJ, JJ + JB -1
DO 140 KK = II+LL-JJ+1, IIA+MP-1
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
140 CONTINUE
IOFFA = IOFFA + LDA
150 CONTINUE
ELSE
DO 170 LL = JJ, JJ + JB -1
DO 160 KK = II+LL-JJ, IIA+MP-1
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
160 CONTINUE
IOFFA = IOFFA + LDA
170 CONTINUE
END IF
ELSE
DO 190 LL = JJ, JJ + JB -1
DO 180 KK = II, IIA+MP-1
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
180 CONTINUE
IOFFA = IOFFA + LDA
190 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 260 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 210 LL = JJ, JJ + JB -1
DO 200 KK = II+LL-JJ+1, IIA+MP-1
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
200 CONTINUE
IOFFA = IOFFA + LDA
210 CONTINUE
ELSE
DO 230 LL = JJ, JJ + JB -1
DO 220 KK = II+LL-JJ, IIA+MP-1
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
220 CONTINUE
IOFFA = IOFFA + LDA
230 CONTINUE
END IF
ELSE
DO 250 LL = JJ, JJ + JB -1
DO 240 KK = II, IIA+MP-1
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
240 CONTINUE
IOFFA = IOFFA + LDA
250 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
260 CONTINUE
*
END IF
*
* Gather the intermediate results to process (0,0).
*
CALL DGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, KK, LL, -1,
$ 0, 0 )
*
************************************************************************
* one norm
*
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
VALUE = ZERO
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Upper triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 280 LL = JJ, JJ + JB -1
SUM = ZERO
DO 270 KK = IIA, MIN( II+LL-JJ-1, IIA+MP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
270 CONTINUE
* Unit diagonal entry
KK = II+LL-JJ
IF (KK <= IIA+MP-1) THEN
SUM = SUM + ONE
ENDIF
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
280 CONTINUE
ELSE
DO 300 LL = JJ, JJ + JB -1
SUM = ZERO
DO 290 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
290 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
300 CONTINUE
END IF
ELSE
DO 320 LL = JJ, JJ + JB -1
SUM = ZERO
DO 310 KK = IIA, MIN( II-1, IIA+MP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
310 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
320 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 390 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 340 LL = JJ, JJ + JB -1
SUM = ZERO
DO 330 KK = IIA, MIN( II+LL-JJ-1, IIA+MP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
330 CONTINUE
* Unit diagonal entry
KK = II+LL-JJ
IF (KK <= IIA+MP-1) THEN
SUM = SUM + ONE
ENDIF
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
340 CONTINUE
ELSE
DO 360 LL = JJ, JJ + JB -1
SUM = ZERO
DO 350 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
350 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
360 CONTINUE
END IF
ELSE
DO 380 LL = JJ, JJ + JB -1
SUM = ZERO
DO 370 KK = IIA, MIN( II-1, IIA+MP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
370 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
380 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
390 CONTINUE
*
ELSE
*
* Lower triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 410 LL = JJ, JJ + JB -1
SUM = ONE
DO 400 KK = II+LL-JJ+1, IIA+MP-1
SUM = SUM + ABS( A( IOFFA+KK ) )
400 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
410 CONTINUE
ELSE
DO 430 LL = JJ, JJ + JB -1
SUM = ZERO
DO 420 KK = II+LL-JJ, IIA+MP-1
SUM = SUM + ABS( A( IOFFA+KK ) )
420 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
430 CONTINUE
END IF
ELSE
DO 450 LL = JJ, JJ + JB -1
SUM = ZERO
DO 440 KK = II, IIA+MP-1
SUM = SUM + ABS( A( IOFFA+KK ) )
440 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
450 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 520 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 470 LL = JJ, JJ + JB -1
SUM = ONE
DO 460 KK = II+LL-JJ+1, IIA+MP-1
SUM = SUM + ABS( A( IOFFA+KK ) )
460 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
470 CONTINUE
ELSE
DO 490 LL = JJ, JJ + JB -1
SUM = ZERO
DO 480 KK = II+LL-JJ, IIA+MP-1
SUM = SUM + ABS( A( IOFFA+KK ) )
480 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
490 CONTINUE
END IF
ELSE
DO 510 LL = JJ, JJ + JB -1
SUM = ZERO
DO 500 KK = II, IIA+MP-1
SUM = SUM + ABS( A( IOFFA+KK ) )
500 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
510 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
520 CONTINUE
*
END IF
*
* Find sum of global matrix columns and store on row 0 of
* process grid
*
CALL DGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK, 1,
$ 0, MYCOL )
*
* Find maximum sum of columns for 1-norm
*
IF( MYROW.EQ.0 ) THEN
IF( NQ.GT.0 ) THEN
VALUE = WORK( IDAMAX( NQ, WORK, 1 ) )
ELSE
VALUE = ZERO
END IF
CALL DGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, KK, LL,
$ -1, 0, 0 )
END IF
*
************************************************************************
* infinity norm
*
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 540 KK = IIA, IIA+MP-1
WORK( KK ) = ZERO
540 CONTINUE
ELSE
DO 570 KK = IIA, IIA+MP-1
WORK( KK ) = ZERO
570 CONTINUE
END IF
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Upper triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 590 LL = JJ, JJ + JB -1
DO 580 KK = IIA, MIN( II+LL-JJ-1, IIA+MP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
580 CONTINUE
* Unit diagonal entry
KK = II+LL-JJ
IF (KK <= IIA+MP-1) THEN
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) + ONE
ENDIF
IOFFA = IOFFA + LDA
590 CONTINUE
ELSE
DO 610 LL = JJ, JJ + JB -1
DO 600 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
600 CONTINUE
IOFFA = IOFFA + LDA
610 CONTINUE
END IF
ELSE
DO 630 LL = JJ, JJ + JB -1
DO 620 KK = IIA, MIN( II-1, IIA+MP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
620 CONTINUE
IOFFA = IOFFA + LDA
630 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 700 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 650 LL = JJ, JJ + JB -1
DO 640 KK = IIA, MIN( II+LL-JJ-1, IIA+MP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
640 CONTINUE
* Unit diagonal entry
KK = II+LL-JJ
IF (KK <= IIA+MP-1) THEN
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) + ONE
ENDIF
IOFFA = IOFFA + LDA
650 CONTINUE
ELSE
DO 670 LL = JJ, JJ + JB -1
DO 660 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
660 CONTINUE
IOFFA = IOFFA + LDA
670 CONTINUE
END IF
ELSE
DO 690 LL = JJ, JJ + JB -1
DO 680 KK = IIA, MIN( II-1, IIA+MP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
680 CONTINUE
IOFFA = IOFFA + LDA
690 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
700 CONTINUE
*
ELSE
*
* Lower triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 720 LL = JJ, JJ + JB -1
* Unit diagonal entry
KK = II+LL-JJ
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) + ONE
DO 710 KK = II+LL-JJ+1, IIA+MP-1
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
710 CONTINUE
IOFFA = IOFFA + LDA
720 CONTINUE
ELSE
DO 740 LL = JJ, JJ + JB -1
DO 730 KK = II+LL-JJ, IIA+MP-1
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
730 CONTINUE
IOFFA = IOFFA + LDA
740 CONTINUE
END IF
ELSE
DO 760 LL = JJ, JJ + JB -1
DO 750 KK = II, IIA+MP-1
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
750 CONTINUE
IOFFA = IOFFA + LDA
760 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 830 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 780 LL = JJ, JJ + JB -1
* Unit diagonal entry
KK = II+LL-JJ
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) + ONE
DO 770 KK = II+LL-JJ+1, IIA+MP-1
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
770 CONTINUE
IOFFA = IOFFA + LDA
780 CONTINUE
ELSE
DO 800 LL = JJ, JJ + JB -1
DO 790 KK = II+LL-JJ, IIA+MP-1
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
790 CONTINUE
IOFFA = IOFFA + LDA
800 CONTINUE
END IF
ELSE
DO 820 LL = JJ, JJ + JB -1
DO 810 KK = II, IIA+MP-1
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
810 CONTINUE
IOFFA = IOFFA + LDA
820 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
830 CONTINUE
*
END IF
*
* Find sum of global matrix rows and store on column 0 of
* process grid
*
CALL DGSUM2D( ICTXT, 'Rowwise', ' ', MP, 1, WORK, MAX( 1, MP ),
$ MYROW, 0 )
*
* Find maximum sum of rows for Infinity-norm
*
IF( MYCOL.EQ.0 ) THEN
IF( MP.GT.0 ) THEN
VALUE = WORK( IDAMAX( MP, WORK, 1 ) )
ELSE
VALUE = ZERO
END IF
CALL DGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, VALUE, 1, KK,
$ LL, -1, 0, 0 )
END IF
*
************************************************************************
* Frobenius norm
* SSQ(1) is scale
* SSQ(2) is sum-of-squares
*
ELSE IF( LSAME( NORM, 'F' ) .OR. LSAME( NORM, 'E' ) ) THEN
*
IF( UDIAG ) THEN
SSQ(1) = ONE
SSQ(2) = DBLE( MIN( M, N ) ) / DBLE( NPROW*NPCOL )
ELSE
SSQ(1) = ZERO
SSQ(2) = ONE
END IF
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* ***********************
* Upper triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* First block column of sub-matrix.
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
* This process has part of current block column,
* including diagonal block.
IF( UDIAG ) THEN
DO 840 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( MIN( II+LL-JJ-1, IIA+MP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
840 CONTINUE
ELSE
DO 850 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( MIN( II+LL-JJ, IIA+MP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
850 CONTINUE
END IF
ELSE
* This rank has part of current block column,
* but not diagonal block.
* It seems this lassq will be length 0, since ii = iia.
DO 860 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( MIN( II-1, IIA+MP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
860 CONTINUE
END IF
JJ = JJ + JB
END IF
*
* If this process has part of current block row, advance ii,
* then advance iarow, iacol to next diagonal block.
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block columns
*
DO 900 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 870 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( MIN(II+LL-JJ-1, IIA+MP-1)-IIA+1,
$ A( IIA+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
870 CONTINUE
ELSE
DO 880 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( MIN( II+LL-JJ, IIA+MP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
880 CONTINUE
END IF
ELSE
DO 890 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( MIN( II-1, IIA+MP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
890 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
900 CONTINUE
*
ELSE
*
* ***********************
* Lower triangular matrix
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 910 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( IIA+MP-(II+LL-JJ+1),
$ A( II+LL-JJ+1+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
910 CONTINUE
ELSE
DO 920 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( IIA+MP-(II+LL-JJ),
$ A( II+LL-JJ+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
920 CONTINUE
END IF
ELSE
DO 930 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( IIA+MP-II, A( II+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
930 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 970 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
IF( UDIAG ) THEN
DO 940 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( IIA+MP-(II+LL-JJ+1),
$ A( II+LL-JJ+1+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
940 CONTINUE
ELSE
DO 950 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( IIA+MP-(II+LL-JJ),
$ A( II+LL-JJ+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
950 CONTINUE
END IF
ELSE
DO 960 LL = JJ, JJ + JB -1
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL ZLASSQ( IIA+MP-II, A( II+IOFFA ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
IOFFA = IOFFA + LDA
960 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
970 CONTINUE
*
END IF
*
* ***********************
* Perform the global scaled sum
*
CALL PDTREECOMB( ICTXT, 'All', 2, SSQ, 0, 0, DCOMBSSQ )
VALUE = SSQ( 1 ) * SQRT( SSQ( 2 ) )
*
END IF
*
* Broadcast the result to every process in the grid.
*
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, 0, 0 )
END IF
*
PZLANTR = VALUE
*
RETURN
*
* End of PZLANTR
*
END
|