File: pzlaqsy.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (360 lines) | stat: -rw-r--r-- 13,393 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      SUBROUTINE PZLAQSY( UPLO, N, A, IA, JA, DESCA, SR, SC, SCOND,
     $                    AMAX, EQUED )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, UPLO
      INTEGER            IA, JA, N
      DOUBLE PRECISION   AMAX, SCOND
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   SC( * ), SR( * )
      COMPLEX*16         A( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLAQSY equilibrates a symmetric distributed matrix
*  sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the
*  vectors SR and SC.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER
*          Specifies whether the upper or lower triangular part of the
*          symmetric distributed matrix sub( A ) is to be referenced:
*             = 'U':  Upper triangular
*             = 'L':  Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  A       (input/output) COMPLEX*16 pointer into the local
*          memory to an array of local dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, the local pieces of the distributed symmetric
*          matrix sub( A ). If UPLO = 'U', the leading N-by-N upper
*          triangular part of sub( A ) contains the upper triangular
*          part of the matrix, and the strictly lower triangular part
*          of sub( A ) is not referenced.  If UPLO = 'L', the leading
*          N-by-N lower triangular part of sub( A ) contains the lower
*          triangular part of the matrix, and the strictly upper trian-
*          gular part of sub( A ) is not referenced.
*          On exit, if EQUED = 'Y', the equilibrated matrix:
*              diag(SR(IA:IA+N-1)) * sub( A ) * diag(SC(JA:JA+N-1)).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  SR      (local input) DOUBLE PRECISION array, dimension LOCr(M_A)
*          The scale factors for A(IA:IA+M-1,JA:JA+N-1). SR is aligned
*          with the distributed matrix A, and replicated across every
*          process column. SR is tied to the distributed matrix A.
*
*  SC      (local input) DOUBLE PRECISION array, dimension LOCc(N_A)
*          The scale factors for sub( A ). SC is aligned with the dis-
*          tributed matrix A, and replicated down every process row.
*          SC is tied to the distributed matrix A.
*
*  SCOND   (global input) DOUBLE PRECISION
*          Ratio of the smallest SR(i) (respectively SC(j)) to the
*          largest SR(i) (respectively SC(j)), with IA <= i <= IA+N-1
*          and JA <= j <= JA+N-1.
*
*  AMAX    (global input) DOUBLE PRECISION
*          Absolute value of the largest distributed submatrix entry.
*
*  EQUED   (output) CHARACTER*1
*          Specifies whether or not equilibration was done.
*          = 'N':  No equilibration.
*          = 'Y':  Equilibration was done, i.e., sub( A ) has been re-
*                  placed by:
*                  diag(SR(IA:IA+N-1)) * sub( A ) * diag(SC(JA:JA+N-1)).
*
*  Internal Parameters
*  ===================
*
*  THRESH is a threshold value used to decide if scaling should be done
*  based on the ratio of the scaling factors.  If SCOND < THRESH,
*  scaling is done.
*
*  LARGE and SMALL are threshold values used to decide if scaling should
*  be done based on the absolute size of the largest matrix element.
*  If AMAX > LARGE or AMAX < SMALL, scaling is done.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE, THRESH
      PARAMETER          ( ONE = 1.0D+0, THRESH = 0.1D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IACOL, IAROW, ICTXT, II, IIA, IOFFA, IROFF, J,
     $                   JB, JJ, JJA, JN, KK, LDA, LL, MYCOL, MYROW, NP,
     $                   NPCOL, NPROW
      DOUBLE PRECISION   CJ, LARGE, SMALL
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, INFOG2L
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           ICEIL, LSAME, NUMROC, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         EQUED = 'N'
         RETURN
      END IF
*
*     Get grid parameters and compute local indexes
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      LDA = DESCA( LLD_ )
*
*     Initialize LARGE and SMALL.
*
      SMALL = PDLAMCH( ICTXT, 'Safe minimum' ) /
     $        PDLAMCH( ICTXT, 'Precision' )
      LARGE = ONE / SMALL
*
      IF( SCOND.GE.THRESH .AND. AMAX.GE.SMALL .AND. AMAX.LE.LARGE ) THEN
*
*        No equilibration
*
         EQUED = 'N'
*
      ELSE
*
         II = IIA
         JJ = JJA
         JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
         JB = JN-JA+1
*
*        Replace A by diag(S) * A * diag(S).
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Upper triangle of A(IA:IA+N-1,JA:JA+N-1) is stored.
*           Handle first block separately
*
            IOFFA = (JJ-1)*LDA
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  DO 20 LL = JJ, JJ + JB -1
                     CJ = SC( LL )
                     DO 10 KK = IIA, II+LL-JJ+1
                        A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
   10                CONTINUE
                     IOFFA = IOFFA + LDA
   20             CONTINUE
               ELSE
                  IOFFA = IOFFA + JB*LDA
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 70 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     DO 40 LL = JJ, JJ + JB -1
                        CJ = SC( LL )
                        DO 30 KK = IIA, II+LL-JJ+1
                           A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
   30                   CONTINUE
                        IOFFA = IOFFA + LDA
   40                CONTINUE
                  ELSE
                     DO 60 LL = JJ, JJ + JB -1
                        CJ = SC( LL )
                        DO 50 KK = IIA, II-1
                           A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
   50                   CONTINUE
                        IOFFA = IOFFA + LDA
   60                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
   70       CONTINUE
*
         ELSE
*
*           Lower triangle of A(IA:IA+N-1,JA:JA+N-1) is stored.
*           Handle first block separately
*
            IROFF = MOD( IA-1, DESCA( MB_ ) )
            NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
            IF( MYROW.EQ.IAROW )
     $         NP = NP-IROFF
*
            IOFFA = (JJ-1)*LDA
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  DO 90 LL = JJ, JJ + JB -1
                     CJ = SC( LL )
                     DO 80 KK = II+LL-JJ, IIA+NP-1
                        A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
   80                CONTINUE
                     IOFFA = IOFFA + LDA
   90             CONTINUE
               ELSE
                  DO 110 LL = JJ, JJ + JB -1
                     CJ = SC( LL )
                     DO 100 KK = II, IIA+NP-1
                        A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
  100                CONTINUE
                     IOFFA = IOFFA + LDA
  110             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 160 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     DO 130 LL = JJ, JJ + JB -1
                        CJ = SC( LL )
                        DO 120 KK = II+LL-JJ, IIA+NP-1
                           A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
  120                   CONTINUE
                        IOFFA = IOFFA + LDA
  130                CONTINUE
                  ELSE
                     DO 150 LL = JJ, JJ + JB -1
                        CJ = SC( LL )
                        DO 140 KK = II, IIA+NP-1
                           A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
  140                   CONTINUE
                        IOFFA = IOFFA + LDA
  150                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  160       CONTINUE
*
         END IF
*
         EQUED = 'Y'
*
      END IF
*
      RETURN
*
*     End of PZLAQSY
*
      END