1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
SUBROUTINE PZLAQSY( UPLO, N, A, IA, JA, DESCA, SR, SC, SCOND,
$ AMAX, EQUED )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER EQUED, UPLO
INTEGER IA, JA, N
DOUBLE PRECISION AMAX, SCOND
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION SC( * ), SR( * )
COMPLEX*16 A( * )
* ..
*
* Purpose
* =======
*
* PZLAQSY equilibrates a symmetric distributed matrix
* sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the
* vectors SR and SC.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* symmetric distributed matrix sub( A ) is to be referenced:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (input/output) COMPLEX*16 pointer into the local
* memory to an array of local dimension (LLD_A,LOCc(JA+N-1)).
* On entry, the local pieces of the distributed symmetric
* matrix sub( A ). If UPLO = 'U', the leading N-by-N upper
* triangular part of sub( A ) contains the upper triangular
* part of the matrix, and the strictly lower triangular part
* of sub( A ) is not referenced. If UPLO = 'L', the leading
* N-by-N lower triangular part of sub( A ) contains the lower
* triangular part of the matrix, and the strictly upper trian-
* gular part of sub( A ) is not referenced.
* On exit, if EQUED = 'Y', the equilibrated matrix:
* diag(SR(IA:IA+N-1)) * sub( A ) * diag(SC(JA:JA+N-1)).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* SR (local input) DOUBLE PRECISION array, dimension LOCr(M_A)
* The scale factors for A(IA:IA+M-1,JA:JA+N-1). SR is aligned
* with the distributed matrix A, and replicated across every
* process column. SR is tied to the distributed matrix A.
*
* SC (local input) DOUBLE PRECISION array, dimension LOCc(N_A)
* The scale factors for sub( A ). SC is aligned with the dis-
* tributed matrix A, and replicated down every process row.
* SC is tied to the distributed matrix A.
*
* SCOND (global input) DOUBLE PRECISION
* Ratio of the smallest SR(i) (respectively SC(j)) to the
* largest SR(i) (respectively SC(j)), with IA <= i <= IA+N-1
* and JA <= j <= JA+N-1.
*
* AMAX (global input) DOUBLE PRECISION
* Absolute value of the largest distributed submatrix entry.
*
* EQUED (output) CHARACTER*1
* Specifies whether or not equilibration was done.
* = 'N': No equilibration.
* = 'Y': Equilibration was done, i.e., sub( A ) has been re-
* placed by:
* diag(SR(IA:IA+N-1)) * sub( A ) * diag(SC(JA:JA+N-1)).
*
* Internal Parameters
* ===================
*
* THRESH is a threshold value used to decide if scaling should be done
* based on the ratio of the scaling factors. If SCOND < THRESH,
* scaling is done.
*
* LARGE and SMALL are threshold values used to decide if scaling should
* be done based on the absolute size of the largest matrix element.
* If AMAX > LARGE or AMAX < SMALL, scaling is done.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, THRESH
PARAMETER ( ONE = 1.0D+0, THRESH = 0.1D+0 )
* ..
* .. Local Scalars ..
INTEGER IACOL, IAROW, ICTXT, II, IIA, IOFFA, IROFF, J,
$ JB, JJ, JJA, JN, KK, LDA, LL, MYCOL, MYROW, NP,
$ NPCOL, NPROW
DOUBLE PRECISION CJ, LARGE, SMALL
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL ICEIL, LSAME, NUMROC, PDLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
EQUED = 'N'
RETURN
END IF
*
* Get grid parameters and compute local indexes
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
LDA = DESCA( LLD_ )
*
* Initialize LARGE and SMALL.
*
SMALL = PDLAMCH( ICTXT, 'Safe minimum' ) /
$ PDLAMCH( ICTXT, 'Precision' )
LARGE = ONE / SMALL
*
IF( SCOND.GE.THRESH .AND. AMAX.GE.SMALL .AND. AMAX.LE.LARGE ) THEN
*
* No equilibration
*
EQUED = 'N'
*
ELSE
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* Replace A by diag(S) * A * diag(S).
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Upper triangle of A(IA:IA+N-1,JA:JA+N-1) is stored.
* Handle first block separately
*
IOFFA = (JJ-1)*LDA
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 20 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 10 KK = IIA, II+LL-JJ+1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
10 CONTINUE
IOFFA = IOFFA + LDA
20 CONTINUE
ELSE
IOFFA = IOFFA + JB*LDA
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 70 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 40 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 30 KK = IIA, II+LL-JJ+1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
30 CONTINUE
IOFFA = IOFFA + LDA
40 CONTINUE
ELSE
DO 60 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 50 KK = IIA, II-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
50 CONTINUE
IOFFA = IOFFA + LDA
60 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
70 CONTINUE
*
ELSE
*
* Lower triangle of A(IA:IA+N-1,JA:JA+N-1) is stored.
* Handle first block separately
*
IROFF = MOD( IA-1, DESCA( MB_ ) )
NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
IF( MYROW.EQ.IAROW )
$ NP = NP-IROFF
*
IOFFA = (JJ-1)*LDA
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 90 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 80 KK = II+LL-JJ, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
80 CONTINUE
IOFFA = IOFFA + LDA
90 CONTINUE
ELSE
DO 110 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 100 KK = II, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
100 CONTINUE
IOFFA = IOFFA + LDA
110 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 160 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 130 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 120 KK = II+LL-JJ, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
120 CONTINUE
IOFFA = IOFFA + LDA
130 CONTINUE
ELSE
DO 150 LL = JJ, JJ + JB -1
CJ = SC( LL )
DO 140 KK = II, IIA+NP-1
A( IOFFA + KK ) = CJ*SR( KK )*A( IOFFA + KK )
140 CONTINUE
IOFFA = IOFFA + LDA
150 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
160 CONTINUE
*
END IF
*
EQUED = 'Y'
*
END IF
*
RETURN
*
* End of PZLAQSY
*
END
|