1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
SUBROUTINE PZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, IV,
$ JV, DESCV, T, C, IC, JC, DESCC, WORK )
*
* -- ScaLAPACK routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS, DIRECT, STOREV
INTEGER IC, IV, JC, JV, K, M, N
* ..
* .. Array Arguments ..
INTEGER DESCC( * ), DESCV( * )
COMPLEX*16 C( * ), T( * ), V( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PZLARFB applies a complex block reflector Q or its conjugate
* transpose Q**H to a complex M-by-N distributed matrix sub( C )
* denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* SIDE (global input) CHARACTER
* = 'L': apply Q or Q**H from the Left;
* = 'R': apply Q or Q**H from the Right.
*
* TRANS (global input) CHARACTER
* = 'N': No transpose, apply Q;
* = 'C': Conjugate transpose, apply Q**H.
*
* DIRECT (global input) CHARACTER
* Indicates how Q is formed from a product of elementary
* reflectors
* = 'F': Q = H(1) H(2) . . . H(k) (Forward)
* = 'B': Q = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (global input) CHARACTER
* Indicates how the vectors which define the elementary
* reflectors are stored:
* = 'C': Columnwise
* = 'R': Rowwise
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix sub( C ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( C ). N >= 0.
*
* K (global input) INTEGER
* The order of the matrix T (= the number of elementary
* reflectors whose product defines the block reflector).
*
* V (local input) COMPLEX*16 pointer into the local memory
* to an array of dimension ( LLD_V, LOCc(JV+K-1) ) if
* STOREV = 'C', ( LLD_V, LOCc(JV+M-1)) if STOREV = 'R' and
* SIDE = 'L', ( LLD_V, LOCc(JV+N-1) ) if STOREV = 'R' and
* SIDE = 'R'. It contains the local pieces of the distributed
* vectors V representing the Householder transformation.
* See further details.
* If STOREV = 'C' and SIDE = 'L', LLD_V >= MAX(1,LOCr(IV+M-1));
* if STOREV = 'C' and SIDE = 'R', LLD_V >= MAX(1,LOCr(IV+N-1));
* if STOREV = 'R', LLD_V >= LOCr(IV+K-1).
*
* IV (global input) INTEGER
* The row index in the global array V indicating the first
* row of sub( V ).
*
* JV (global input) INTEGER
* The column index in the global array V indicating the
* first column of sub( V ).
*
* DESCV (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix V.
*
* T (local input) COMPLEX*16 array, dimension MB_V by MB_V
* if STOREV = 'R' and NB_V by NB_V if STOREV = 'C'. The trian-
* gular matrix T in the representation of the block reflector.
*
* C (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
* On entry, the M-by-N distributed matrix sub( C ). On exit,
* sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or
* sub( C )*Q or sub( C )*Q'.
*
* IC (global input) INTEGER
* The row index in the global array C indicating the first
* row of sub( C ).
*
* JC (global input) INTEGER
* The column index in the global array C indicating the
* first column of sub( C ).
*
* DESCC (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix C.
*
* WORK (local workspace) COMPLEX*16 array, dimension (LWORK)
* If STOREV = 'C',
* if SIDE = 'L',
* LWORK >= ( NqC0 + MpC0 ) * K
* else if SIDE = 'R',
* LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC,
* NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ),
* MpC0 ) ) * K
* end if
* else if STOREV = 'R',
* if SIDE = 'L',
* LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC,
* MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ),
* NqC0 ) ) * K
* else if SIDE = 'R',
* LWORK >= ( MpC0 + NqC0 ) * K
* end if
* end if
*
* where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
*
* IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ),
* IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ),
* IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ),
* MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ),
* NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
*
* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
* NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ),
* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
*
* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* Alignment requirements
* ======================
*
* The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1)
* must verify some alignment properties, namely the following
* expressions should be true:
*
* If STOREV = 'Columnwise'
* If SIDE = 'Left',
* ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW )
* If SIDE = 'Right',
* ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC )
* else if STOREV = 'Rowwise'
* If SIDE = 'Left',
* ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC )
* If SIDE = 'Right',
* ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL )
* end if
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL FORWARD
CHARACTER COLBTOP, ROWBTOP, TRANST, UPLO
INTEGER HEIGHT, IBASE, ICCOL, ICOFFC, ICOFFV, ICROW,
$ ICTXT, II, IIBEG, IIC, IIEND, IINXT, IIV,
$ ILASTCOL, ILASTROW, ILEFT, IOFF, IOFFC, IOFFV,
$ IPT, IPV, IPW, IPW1, IRIGHT, IROFFC, IROFFV,
$ ITOP, IVCOL, IVROW, JJ, JJBEG, JJC, JJEND,
$ JJNXT, JJV, KP, KQ, LDC, LDV, LV, LW, MBV, MPC,
$ MPC0, MQV, MQV0, MYCOL, MYDIST, MYROW, NBV,
$ NPV, NPV0, NPCOL, NPROW, NQC, NQC0, WIDE
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG1L, INFOG2L, PB_TOPGET,
$ PBZTRAN, ZGEBR2D, ZGEBS2D, ZGEMM,
$ ZGSUM2D, ZLAMOV, ZLASET, ZTRBR2D,
$ ZTRBS2D, ZTRMM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, NUMROC
EXTERNAL ICEIL, LSAME, NUMROC
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 .OR. K.LE.0 )
$ RETURN
*
* Get grid parameters
*
ICTXT = DESCC( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IF( LSAME( TRANS, 'N' ) ) THEN
TRANST = 'C'
ELSE
TRANST = 'N'
END IF
FORWARD = LSAME( DIRECT, 'F' )
IF( FORWARD ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
*
CALL INFOG2L( IV, JV, DESCV, NPROW, NPCOL, MYROW, MYCOL, IIV, JJV,
$ IVROW, IVCOL )
CALL INFOG2L( IC, JC, DESCC, NPROW, NPCOL, MYROW, MYCOL, IIC, JJC,
$ ICROW, ICCOL )
LDC = DESCC( LLD_ )
LDV = DESCV( LLD_ )
IIC = MIN( IIC, LDC )
IIV = MIN( IIV, LDV )
IROFFC = MOD( IC-1, DESCC( MB_ ) )
ICOFFC = MOD( JC-1, DESCC( NB_ ) )
MBV = DESCV( MB_ )
NBV = DESCV( NB_ )
IROFFV = MOD( IV-1, MBV )
ICOFFV = MOD( JV-1, NBV )
MPC = NUMROC( M+IROFFC, DESCC( MB_ ), MYROW, ICROW, NPROW )
NQC = NUMROC( N+ICOFFC, DESCC( NB_ ), MYCOL, ICCOL, NPCOL )
IF( MYCOL.EQ.ICCOL )
$ NQC = NQC - ICOFFC
IF( MYROW.EQ.ICROW )
$ MPC = MPC - IROFFC
JJC = MIN( JJC, MAX( 1, JJC+NQC-1 ) )
JJV = MIN( JJV, MAX( 1, NUMROC( DESCV( N_ ), NBV, MYCOL,
$ DESCV( CSRC_ ), NPCOL ) ) )
IOFFC = IIC + ( JJC-1 ) * LDC
IOFFV = IIV + ( JJV-1 ) * LDV
*
IF( LSAME( STOREV, 'C' ) ) THEN
*
* V is stored columnwise
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form Q*sub( C ) or Q'*sub( C )
*
* Locally V( IOFFV ) is MPV x K, C( IOFFC ) is MPC x NQC
* WORK( IPV ) is MPC x K = V( IOFFV ), MPC = MPV
* WORK( IPW ) is NQC x K = C( IOFFC )' * V( IOFFV )
*
IPV = 1
IPW = IPV + MPC * K
LV = MAX( 1, MPC )
LW = MAX( 1, NQC )
*
* Broadcast V to the other process columns.
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
IF( MYCOL.EQ.IVCOL ) THEN
CALL ZGEBS2D( ICTXT, 'Rowwise', ROWBTOP, MPC, K,
$ V( IOFFV ), LDV )
IF( MYROW.EQ.IVROW )
$ CALL ZTRBS2D( ICTXT, 'Rowwise', ROWBTOP, UPLO,
$ 'Non unit', K, K, T, NBV )
CALL ZLAMOV( 'All', MPC, K, V( IOFFV ), LDV, WORK( IPV ),
$ LV )
ELSE
CALL ZGEBR2D( ICTXT, 'Rowwise', ROWBTOP, MPC, K,
$ WORK( IPV ), LV, MYROW, IVCOL )
IF( MYROW.EQ.IVROW )
$ CALL ZTRBR2D( ICTXT, 'Rowwise', ROWBTOP, UPLO,
$ 'Non unit', K, K, T, NBV, MYROW, IVCOL )
END IF
*
IF( FORWARD ) THEN
*
* WORK(IPV) = ( V1 ) where V1 is unit lower triangular,
* ( V2 ) zeroes upper triangular part of V1
*
MYDIST = MOD( MYROW-IVROW+NPROW, NPROW )
ITOP = MAX( 0, MYDIST*MBV - IROFFV )
IIBEG = IIV
IIEND = IIBEG + MPC - 1
IINXT = MIN( ICEIL( IIBEG, MBV )*MBV, IIEND )
*
10 CONTINUE
IF( K-ITOP .GT.0 ) THEN
CALL ZLASET( 'Upper', IINXT-IIBEG+1, K-ITOP, ZERO,
$ ONE, WORK( IPV+IIBEG-IIV+ITOP*LV ), LV )
MYDIST = MYDIST + NPROW
ITOP = MYDIST * MBV - IROFFV
IIBEG = IINXT + 1
IINXT = MIN( IINXT+MBV, IIEND )
GO TO 10
END IF
*
ELSE
*
* WORK(IPV) = ( V1 ) where V2 is unit upper triangular,
* ( V2 ) zeroes lower triangular part of V2
*
JJ = JJV
IOFF = MOD( IV+M-K-1, MBV )
CALL INFOG1L( IV+M-K, MBV, NPROW, MYROW, DESCV( RSRC_ ),
$ II, ILASTROW )
KP = NUMROC( K+IOFF, MBV, MYROW, ILASTROW, NPROW )
IF( MYROW.EQ.ILASTROW )
$ KP = KP - IOFF
MYDIST = MOD( MYROW-ILASTROW+NPROW, NPROW )
ITOP = MYDIST * MBV - IOFF
IBASE = MIN( ITOP+MBV, K )
ITOP = MIN( MAX( 0, ITOP ), K )
*
20 CONTINUE
IF( JJ.LE.( JJV+K-1 ) ) THEN
HEIGHT = IBASE - ITOP
CALL ZLASET( 'All', KP, ITOP-JJ+JJV, ZERO, ZERO,
$ WORK( IPV+II-IIV+(JJ-JJV)*LV ), LV )
CALL ZLASET( 'Lower', KP, HEIGHT, ZERO, ONE,
$ WORK( IPV+II-IIV+ITOP*LV ), LV )
KP = MAX( 0, KP - HEIGHT )
II = II + HEIGHT
JJ = JJV + IBASE
MYDIST = MYDIST + NPROW
ITOP = MYDIST * MBV - IOFF
IBASE = MIN( ITOP + MBV, K )
ITOP = MIN( ITOP, K )
GO TO 20
END IF
*
END IF
*
* WORK( IPW ) = C( IOFFC )' * V (NQC x MPC x K) -> NQC x K
*
IF( MPC.GT.0 ) THEN
CALL ZGEMM( 'Conjugate transpose', 'No transpose', NQC,
$ K, MPC, ONE, C( IOFFC ), LDC, WORK( IPV ), LV,
$ ZERO, WORK( IPW ), LW )
ELSE
CALL ZLASET( 'All', NQC, K, ZERO, ZERO, WORK( IPW ), LW )
END IF
*
CALL ZGSUM2D( ICTXT, 'Columnwise', ' ', NQC, K, WORK( IPW ),
$ LW, IVROW, MYCOL )
*
IF( MYROW.EQ.IVROW ) THEN
*
* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
CALL ZTRMM( 'Right', UPLO, TRANST, 'Non unit', NQC, K,
$ ONE, T, NBV, WORK( IPW ), LW )
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', NQC, K,
$ WORK( IPW ), LW )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', NQC, K,
$ WORK( IPW ), LW, IVROW, MYCOL )
END IF
*
* C C - V * W'
* C( IOFFC ) = C( IOFFC ) - WORK( IPV ) * WORK( IPW )'
* MPC x NQC MPC x K K x NQC
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', MPC, NQC,
$ K, -ONE, WORK( IPV ), LV, WORK( IPW ), LW, ONE,
$ C( IOFFC ), LDC )
*
ELSE
*
* Form sub( C )*Q or sub( C )*Q'
*
* ICOFFC = IROFFV is required by the current transposition
* routine PBZTRAN
*
NPV0 = NUMROC( N+IROFFV, MBV, MYROW, IVROW, NPROW )
IF( MYROW.EQ.IVROW ) THEN
NPV = NPV0 - IROFFV
ELSE
NPV = NPV0
END IF
IF( MYCOL.EQ.ICCOL ) THEN
NQC0 = NQC + ICOFFC
ELSE
NQC0 = NQC
END IF
*
* Locally V( IOFFV ) is NPV x K C( IOFFC ) is MPC x NQC
* WORK( IPV ) is K x NQC0 = [ . V( IOFFV ) ]'
* WORK( IPW ) is NPV0 x K = [ . V( IOFFV )' ]'
* WORK( IPT ) is the workspace for PBZTRAN
*
IPV = 1
IPW = IPV + K * NQC0
IPT = IPW + NPV0 * K
LV = MAX( 1, K )
LW = MAX( 1, NPV0 )
*
IF( MYCOL.EQ.IVCOL ) THEN
IF( MYROW.EQ.IVROW ) THEN
CALL ZLASET( 'All', IROFFV, K, ZERO, ZERO,
$ WORK( IPW ), LW )
IPW1 = IPW + IROFFV
CALL ZLAMOV( 'All', NPV, K, V( IOFFV ), LDV,
$ WORK( IPW1 ), LW )
ELSE
IPW1 = IPW
CALL ZLAMOV( 'All', NPV, K, V( IOFFV ), LDV,
$ WORK( IPW1 ), LW )
END IF
*
IF( FORWARD ) THEN
*
* WORK(IPW) = ( . V1' V2' )' where V1 is unit lower
* triangular, zeroes upper triangular part of V1
*
MYDIST = MOD( MYROW-IVROW+NPROW, NPROW )
ITOP = MAX( 0, MYDIST*MBV - IROFFV )
IIBEG = IIV
IIEND = IIBEG + NPV - 1
IINXT = MIN( ICEIL( IIBEG, MBV )*MBV, IIEND )
*
30 CONTINUE
IF( ( K-ITOP ).GT.0 ) THEN
CALL ZLASET( 'Upper', IINXT-IIBEG+1, K-ITOP, ZERO,
$ ONE, WORK( IPW1+IIBEG-IIV+ITOP*LW ),
$ LW )
MYDIST = MYDIST + NPROW
ITOP = MYDIST * MBV - IROFFV
IIBEG = IINXT + 1
IINXT = MIN( IINXT+MBV, IIEND )
GO TO 30
END IF
*
ELSE
*
* WORK( IPW ) = ( . V1' V2' )' where V2 is unit upper
* triangular, zeroes lower triangular part of V2.
*
JJ = JJV
CALL INFOG1L( IV+N-K, MBV, NPROW, MYROW,
$ DESCV( RSRC_ ), II, ILASTROW )
IOFF = MOD( IV+N-K-1, MBV )
KP = NUMROC( K+IOFF, MBV, MYROW, ILASTROW, NPROW )
IF( MYROW.EQ.ILASTROW )
$ KP = KP - IOFF
MYDIST = MOD( MYROW-ILASTROW+NPROW, NPROW )
ITOP = MYDIST * MBV - IOFF
IBASE = MIN( ITOP+MBV, K )
ITOP = MIN( MAX( 0, ITOP ), K )
*
40 CONTINUE
IF( JJ.LE.( JJV+K-1 ) ) THEN
HEIGHT = IBASE - ITOP
CALL ZLASET( 'All', KP, ITOP-JJ+JJV, ZERO, ZERO,
$ WORK( IPW1+II-IIV+(JJ-JJV)*LW ), LW )
CALL ZLASET( 'Lower', KP, HEIGHT, ZERO, ONE,
$ WORK( IPW1+II-IIV+ITOP*LW ), LW )
KP = MAX( 0, KP - HEIGHT )
II = II + HEIGHT
JJ = JJV + IBASE
MYDIST = MYDIST + NPROW
ITOP = MYDIST * MBV - IOFF
IBASE = MIN( ITOP + MBV, K )
ITOP = MIN( ITOP, K )
GO TO 40
END IF
END IF
END IF
*
CALL PBZTRAN( ICTXT, 'Columnwise', 'Conjugate transpose',
$ N+IROFFV, K, MBV, WORK( IPW ), LW, ZERO,
$ WORK( IPV ), LV, IVROW, IVCOL, -1, ICCOL,
$ WORK( IPT ) )
*
* WORK( IPV ) = ( . V' ) -> WORK( IPV ) = V' is K x NQC
*
IF( MYCOL.EQ.ICCOL )
$ IPV = IPV + ICOFFC * LV
*
* WORK( IPW ) becomes MPC x K = C( IOFFC ) * V
* WORK( IPW ) = C( IOFFC ) * V (MPC x NQC x K) -> MPC x K
*
LW = MAX( 1, MPC )
*
IF( NQC.GT.0 ) THEN
CALL ZGEMM( 'No transpose', 'Conjugate transpose', MPC,
$ K, NQC, ONE, C( IOFFC ), LDC, WORK( IPV ),
$ LV, ZERO, WORK( IPW ), LW )
ELSE
CALL ZLASET( 'All', MPC, K, ZERO, ZERO, WORK( IPW ), LW )
END IF
*
CALL ZGSUM2D( ICTXT, 'Rowwise', ' ', MPC, K, WORK( IPW ),
$ LW, MYROW, IVCOL )
*
* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
IF( MYCOL.EQ.IVCOL ) THEN
IF( MYROW.EQ.IVROW ) THEN
*
* Broadcast the block reflector to the other rows.
*
CALL ZTRBS2D( ICTXT, 'Columnwise', ' ', UPLO,
$ 'Non unit', K, K, T, NBV )
ELSE
CALL ZTRBR2D( ICTXT, 'Columnwise', ' ', UPLO,
$ 'Non unit', K, K, T, NBV, IVROW, MYCOL )
END IF
CALL ZTRMM( 'Right', UPLO, TRANS, 'Non unit', MPC, K,
$ ONE, T, NBV, WORK( IPW ), LW )
*
CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', MPC, K, WORK( IPW ),
$ LW )
ELSE
CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', MPC, K, WORK( IPW ),
$ LW, MYROW, IVCOL )
END IF
*
* C C - W * V'
* C( IOFFC ) = C( IOFFC ) - WORK( IPW ) * WORK( IPV )
* MPC x NQC MPC x K K x NQC
*
CALL ZGEMM( 'No transpose', 'No transpose', MPC, NQC, K,
$ -ONE, WORK( IPW ), LW, WORK( IPV ), LV, ONE,
$ C( IOFFC ), LDC )
END IF
*
ELSE
*
* V is stored rowwise
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form Q*sub( C ) or Q'*sub( C )
*
* IROFFC = ICOFFV is required by the current transposition
* routine PBZTRAN
*
MQV0 = NUMROC( M+ICOFFV, NBV, MYCOL, IVCOL, NPCOL )
IF( MYCOL.EQ.IVCOL ) THEN
MQV = MQV0 - ICOFFV
ELSE
MQV = MQV0
END IF
IF( MYROW.EQ.ICROW ) THEN
MPC0 = MPC + IROFFC
ELSE
MPC0 = MPC
END IF
*
* Locally V( IOFFV ) is K x MQV, C( IOFFC ) is MPC x NQC
* WORK( IPV ) is MPC0 x K = [ . V( IOFFV ) ]'
* WORK( IPW ) is K x MQV0 = [ . V( IOFFV ) ]
* WORK( IPT ) is the workspace for PBZTRAN
*
IPV = 1
IPW = IPV + MPC0 * K
IPT = IPW + K * MQV0
LV = MAX( 1, MPC0 )
LW = MAX( 1, K )
*
IF( MYROW.EQ.IVROW ) THEN
IF( MYCOL.EQ.IVCOL ) THEN
CALL ZLASET( 'All', K, ICOFFV, ZERO, ZERO,
$ WORK( IPW ), LW )
IPW1 = IPW + ICOFFV * LW
CALL ZLAMOV( 'All', K, MQV, V( IOFFV ), LDV,
$ WORK( IPW1 ), LW )
ELSE
IPW1 = IPW
CALL ZLAMOV( 'All', K, MQV, V( IOFFV ), LDV,
$ WORK( IPW1 ), LW )
END IF
*
IF( FORWARD ) THEN
*
* WORK( IPW ) = ( . V1 V2 ) where V1 is unit upper
* triangular, zeroes lower triangular part of V1
*
MYDIST = MOD( MYCOL-IVCOL+NPCOL, NPCOL )
ILEFT = MAX( 0, MYDIST * NBV - ICOFFV )
JJBEG = JJV
JJEND = JJV + MQV - 1
JJNXT = MIN( ICEIL( JJBEG, NBV ) * NBV, JJEND )
*
50 CONTINUE
IF( ( K-ILEFT ).GT.0 ) THEN
CALL ZLASET( 'Lower', K-ILEFT, JJNXT-JJBEG+1, ZERO,
$ ONE,
$ WORK( IPW1+ILEFT+(JJBEG-JJV)*LW ),
$ LW )
MYDIST = MYDIST + NPCOL
ILEFT = MYDIST * NBV - ICOFFV
JJBEG = JJNXT + 1
JJNXT = MIN( JJNXT+NBV, JJEND )
GO TO 50
END IF
*
ELSE
*
* WORK( IPW ) = ( . V1 V2 ) where V2 is unit lower
* triangular, zeroes upper triangular part of V2.
*
II = IIV
CALL INFOG1L( JV+M-K, NBV, NPCOL, MYCOL,
$ DESCV( CSRC_ ), JJ, ILASTCOL )
IOFF = MOD( JV+M-K-1, NBV )
KQ = NUMROC( K+IOFF, NBV, MYCOL, ILASTCOL, NPCOL )
IF( MYCOL.EQ.ILASTCOL )
$ KQ = KQ - IOFF
MYDIST = MOD( MYCOL-ILASTCOL+NPCOL, NPCOL )
ILEFT = MYDIST * NBV - IOFF
IRIGHT = MIN( ILEFT+NBV, K )
ILEFT = MIN( MAX( 0, ILEFT ), K )
*
60 CONTINUE
IF( II.LE.( IIV+K-1 ) ) THEN
WIDE = IRIGHT - ILEFT
CALL ZLASET( 'All', ILEFT-II+IIV, KQ, ZERO, ZERO,
$ WORK( IPW1+II-IIV+(JJ-JJV)*LW ), LW )
CALL ZLASET( 'Upper', WIDE, KQ, ZERO, ONE,
$ WORK( IPW1+ILEFT+(JJ-JJV)*LW ), LW )
KQ = MAX( 0, KQ - WIDE )
II = IIV + IRIGHT
JJ = JJ + WIDE
MYDIST = MYDIST + NPCOL
ILEFT = MYDIST * NBV - IOFF
IRIGHT = MIN( ILEFT + NBV, K )
ILEFT = MIN( ILEFT, K )
GO TO 60
END IF
END IF
END IF
*
* WORK( IPV ) = WORK( IPW )' (replicated) is MPC0 x K
*
CALL PBZTRAN( ICTXT, 'Rowwise', 'Conjugate transpose', K,
$ M+ICOFFV, NBV, WORK( IPW ), LW, ZERO,
$ WORK( IPV ), LV, IVROW, IVCOL, ICROW, -1,
$ WORK( IPT ) )
*
* WORK( IPV ) = ( . V )' -> WORK( IPV ) = V' is MPC x K
*
IF( MYROW.EQ.ICROW )
$ IPV = IPV + IROFFC
*
* WORK( IPW ) becomes NQC x K = C( IOFFC )' * V'
* WORK( IPW ) = C( IOFFC )' * V' (NQC x MPC x K) -> NQC x K
*
LW = MAX( 1, NQC )
*
IF( MPC.GT.0 ) THEN
CALL ZGEMM( 'Conjugate transpose', 'No transpose', NQC,
$ K, MPC, ONE, C( IOFFC ), LDC, WORK( IPV ),
$ LV, ZERO, WORK( IPW ), LW )
ELSE
CALL ZLASET( 'All', NQC, K, ZERO, ZERO, WORK( IPW ), LW )
END IF
*
CALL ZGSUM2D( ICTXT, 'Columnwise', ' ', NQC, K, WORK( IPW ),
$ LW, IVROW, MYCOL )
*
* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
IF( MYROW.EQ.IVROW ) THEN
IF( MYCOL.EQ.IVCOL ) THEN
*
* Broadcast the block reflector to the other columns.
*
CALL ZTRBS2D( ICTXT, 'Rowwise', ' ', UPLO, 'Non unit',
$ K, K, T, MBV )
ELSE
CALL ZTRBR2D( ICTXT, 'Rowwise', ' ', UPLO, 'Non unit',
$ K, K, T, MBV, MYROW, IVCOL )
END IF
CALL ZTRMM( 'Right', UPLO, TRANST, 'Non unit', NQC, K,
$ ONE, T, MBV, WORK( IPW ), LW )
*
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', NQC, K,
$ WORK( IPW ), LW )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', NQC, K,
$ WORK( IPW ), LW, IVROW, MYCOL )
END IF
*
* C C - V' * W'
* C( IOFFC ) = C( IOFFC ) - WORK( IPV ) * WORK( IPW )'
* MPC x NQC MPC x K K x NQC
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', MPC, NQC,
$ K, -ONE, WORK( IPV ), LV, WORK( IPW ), LW, ONE,
$ C( IOFFC ), LDC )
*
ELSE
*
* Form Q*sub( C ) or Q'*sub( C )
*
* Locally V( IOFFV ) is K x NQV, C( IOFFC ) is MPC x NQC
* WORK( IPV ) is K x NQV = V( IOFFV ), NQV = NQC
* WORK( IPW ) is MPC x K = C( IOFFC ) * V( IOFFV )'
*
IPV = 1
IPW = IPV + K * NQC
LV = MAX( 1, K )
LW = MAX( 1, MPC )
*
* Broadcast V to the other process rows.
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
IF( MYROW.EQ.IVROW ) THEN
CALL ZGEBS2D( ICTXT, 'Columnwise', COLBTOP, K, NQC,
$ V( IOFFV ), LDV )
IF( MYCOL.EQ.IVCOL )
$ CALL ZTRBS2D( ICTXT, 'Columnwise', COLBTOP, UPLO,
$ 'Non unit', K, K, T, MBV )
CALL ZLAMOV( 'All', K, NQC, V( IOFFV ), LDV, WORK( IPV ),
$ LV )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', COLBTOP, K, NQC,
$ WORK( IPV ), LV, IVROW, MYCOL )
IF( MYCOL.EQ.IVCOL )
$ CALL ZTRBR2D( ICTXT, 'Columnwise', COLBTOP, UPLO,
$ 'Non unit', K, K, T, MBV, IVROW, MYCOL )
END IF
*
IF( FORWARD ) THEN
*
* WORK(IPW) = ( V1 V2 ) where V1 is unit upper
* triangular, zeroes lower triangular part of V1
*
MYDIST = MOD( MYCOL-IVCOL+NPCOL, NPCOL )
ILEFT = MAX( 0, MYDIST * NBV - ICOFFV )
JJBEG = JJV
JJEND = JJV + NQC - 1
JJNXT = MIN( ICEIL( JJBEG, NBV ) * NBV, JJEND )
*
70 CONTINUE
IF( ( K-ILEFT ).GT.0 ) THEN
CALL ZLASET( 'Lower', K-ILEFT, JJNXT-JJBEG+1, ZERO,
$ ONE, WORK( IPV+ILEFT+(JJBEG-JJV)*LV ),
$ LV )
MYDIST = MYDIST + NPCOL
ILEFT = MYDIST * NBV - ICOFFV
JJBEG = JJNXT + 1
JJNXT = MIN( JJNXT+NBV, JJEND )
GO TO 70
END IF
*
ELSE
*
* WORK( IPW ) = ( . V1 V2 ) where V2 is unit lower
* triangular, zeroes upper triangular part of V2.
*
II = IIV
CALL INFOG1L( JV+N-K, NBV, NPCOL, MYCOL, DESCV( CSRC_ ),
$ JJ, ILASTCOL )
IOFF = MOD( JV+N-K-1, NBV )
KQ = NUMROC( K+IOFF, NBV, MYCOL, ILASTCOL, NPCOL )
IF( MYCOL.EQ.ILASTCOL )
$ KQ = KQ - IOFF
MYDIST = MOD( MYCOL-ILASTCOL+NPCOL, NPCOL )
ILEFT = MYDIST * NBV - IOFF
IRIGHT = MIN( ILEFT+NBV, K )
ILEFT = MIN( MAX( 0, ILEFT ), K )
*
80 CONTINUE
IF( II.LE.( IIV+K-1 ) ) THEN
WIDE = IRIGHT - ILEFT
CALL ZLASET( 'All', ILEFT-II+IIV, KQ, ZERO, ZERO,
$ WORK( IPV+II-IIV+(JJ-JJV)*LV ), LV )
CALL ZLASET( 'Upper', WIDE, KQ, ZERO, ONE,
$ WORK( IPV+ILEFT+(JJ-JJV)*LV ), LV )
KQ = MAX( 0, KQ - WIDE )
II = IIV + IRIGHT
JJ = JJ + WIDE
MYDIST = MYDIST + NPCOL
ILEFT = MYDIST * NBV - IOFF
IRIGHT = MIN( ILEFT + NBV, K )
ILEFT = MIN( ILEFT, K )
GO TO 80
END IF
*
END IF
*
* WORK( IPV ) is K x NQC = V = V( IOFFV )
* WORK( IPW ) = C( IOFFC ) * V' (MPC x NQC x K) -> MPC x K
*
IF( NQC.GT.0 ) THEN
CALL ZGEMM( 'No transpose', 'Conjugate transpose', MPC,
$ K, NQC, ONE, C( IOFFC ), LDC, WORK( IPV ),
$ LV, ZERO, WORK( IPW ), LW )
ELSE
CALL ZLASET( 'All', MPC, K, ZERO, ZERO, WORK( IPW ), LW )
END IF
*
CALL ZGSUM2D( ICTXT, 'Rowwise', ' ', MPC, K, WORK( IPW ),
$ LW, MYROW, IVCOL )
*
* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
IF( MYCOL.EQ.IVCOL ) THEN
CALL ZTRMM( 'Right', UPLO, TRANS, 'Non unit', MPC, K,
$ ONE, T, MBV, WORK( IPW ), LW )
CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', MPC, K, WORK( IPW ),
$ LW )
ELSE
CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', MPC, K, WORK( IPW ),
$ LW, MYROW, IVCOL )
END IF
*
* C C - W * V
* C( IOFFC ) = C( IOFFC ) - WORK( IPW ) * WORK( IPV )
* MPC x NQC MPC x K K x NQC
*
CALL ZGEMM( 'No transpose', 'No transpose', MPC, NQC, K,
$ -ONE, WORK( IPW ), LW, WORK( IPV ), LV, ONE,
$ C( IOFFC ), LDC )
*
END IF
*
END IF
*
RETURN
*
* End of PZLARFB
*
END
|