1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
SUBROUTINE PZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
$ IV, JV, DESCV, T, C, IC, JC, DESCC, WORK )
*
* -- ScaLAPACK auxiliary routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
* .. Scalar Arguments ..
CHARACTER DIRECT, SIDE, STOREV, TRANS
INTEGER IC, IV, JC, JV, K, L, M, N
* ..
* .. Array Arguments ..
INTEGER DESCC( * ), DESCV( * )
COMPLEX*16 C( * ), T( * ), V( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PZLARZB applies a complex block reflector Q or its conjugate
* transpose Q**H to a complex M-by-N distributed matrix sub( C )
* denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right.
*
* Q is a product of k elementary reflectors as returned by PZTZRZF.
*
* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* SIDE (global input) CHARACTER
* = 'L': apply Q or Q**H from the Left;
* = 'R': apply Q or Q**H from the Right.
*
* TRANS (global input) CHARACTER
* = 'N': No transpose, apply Q;
* = 'C': Conjugate transpose, apply Q**H.
*
* DIRECT (global input) CHARACTER
* Indicates how H is formed from a product of elementary
* reflectors
* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
* = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (global input) CHARACTER
* Indicates how the vectors which define the elementary
* reflectors are stored:
* = 'C': Columnwise (not supported yet)
* = 'R': Rowwise
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix sub( C ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( C ). N >= 0.
*
* K (global input) INTEGER
* The order of the matrix T (= the number of elementary
* reflectors whose product defines the block reflector).
*
* L (global input) INTEGER
* The columns of the distributed submatrix sub( A ) containing
* the meaningful part of the Householder reflectors.
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
* V (local input) COMPLEX*16 pointer into the local memory
* to an array of dimension (LLD_V, LOCc(JV+M-1)) if SIDE = 'L',
* (LLD_V, LOCc(JV+N-1)) if SIDE = 'R'. It contains the local
* pieces of the distributed vectors V representing the
* Householder transformation as returned by PZTZRZF.
* LLD_V >= LOCr(IV+K-1).
*
* IV (global input) INTEGER
* The row index in the global array V indicating the first
* row of sub( V ).
*
* JV (global input) INTEGER
* The column index in the global array V indicating the
* first column of sub( V ).
*
* DESCV (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix V.
*
* T (local input) COMPLEX*16 array, dimension MB_V by MB_V
* The lower triangular matrix T in the representation of the
* block reflector.
*
* C (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
* On entry, the M-by-N distributed matrix sub( C ). On exit,
* sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or
* sub( C )*Q or sub( C )*Q'.
*
* IC (global input) INTEGER
* The row index in the global array C indicating the first
* row of sub( C ).
*
* JC (global input) INTEGER
* The column index in the global array C indicating the
* first column of sub( C ).
*
* DESCC (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix C.
*
* WORK (local workspace) COMPLEX*16 array, dimension (LWORK)
* If STOREV = 'C',
* if SIDE = 'L',
* LWORK >= ( NqC0 + MpC0 ) * K
* else if SIDE = 'R',
* LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC,
* NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ),
* MpC0 ) ) * K
* end if
* else if STOREV = 'R',
* if SIDE = 'L',
* LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC,
* MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ),
* NqC0 ) ) * K
* else if SIDE = 'R',
* LWORK >= ( MpC0 + NqC0 ) * K
* end if
* end if
*
* where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
*
* IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ),
* IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ),
* IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ),
* MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ),
* NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
*
* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
* NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ),
* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
*
* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* Alignment requirements
* ======================
*
* The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1)
* must verify some alignment properties, namely the following
* expressions should be true:
*
* If STOREV = 'Columnwise'
* If SIDE = 'Left',
* ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW )
* If SIDE = 'Right',
* ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC )
* else if STOREV = 'Rowwise'
* If SIDE = 'Left',
* ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC )
* If SIDE = 'Right',
* ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL )
* end if
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LEFT
CHARACTER COLBTOP, TRANST
INTEGER ICCOL1, ICCOL2, ICOFFC1, ICOFFC2, ICOFFV,
$ ICROW1, ICROW2, ICTXT, IIBEG, IIC1, IIC2,
$ IIEND, IINXT, IIV, ILEFT, INFO, IOFFC2, IOFFV,
$ IPT, IPV, IPW, IROFFC1, IROFFC2, ITOP, IVCOL,
$ IVROW, J, JJBEG, JJEND, JJNXT, JJC1, JJC2, JJV,
$ LDC, LDV, LV, LW, MBC, MBV, MPC1, MPC2, MPC20,
$ MQV, MQV0, MYCOL, MYDIST, MYROW, NBC, NBV,
$ NPCOL, NPROW, NQC1, NQC2, NQCALL, NQV
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GRIDINFO, INFOG2L,
$ PBZMATADD, PB_TOPGET, PXERBLA, PBZTRAN,
$ ZGEBR2D, ZGEBS2D, ZGEMM,
$ ZGSUM2D, ZLACGV, ZLAMOV, ZLASET,
$ ZTRBR2D, ZTRBS2D, ZTRMM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, NUMROC
EXTERNAL ICEIL, LSAME, NUMROC
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 .OR. K.LE.0 )
$ RETURN
*
* Get grid parameters
*
ICTXT = DESCC( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Check for currently supported options
*
INFO = 0
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZLARZB', -INFO )
CALL BLACS_ABORT( ICTXT, 1 )
RETURN
END IF
*
LEFT = LSAME( SIDE, 'L' )
IF( LSAME( TRANS, 'N' ) ) THEN
TRANST = 'C'
ELSE
TRANST = 'N'
END IF
*
CALL INFOG2L( IV, JV, DESCV, NPROW, NPCOL, MYROW, MYCOL, IIV, JJV,
$ IVROW, IVCOL )
MBV = DESCV( MB_ )
NBV = DESCV( NB_ )
ICOFFV = MOD( JV-1, NBV )
NQV = NUMROC( L+ICOFFV, NBV, MYCOL, IVCOL, NPCOL )
IF( MYCOL.EQ.IVCOL )
$ NQV = NQV - ICOFFV
LDV = DESCV( LLD_ )
IIV = MIN( IIV, LDV )
JJV = MIN( JJV, MAX( 1, NUMROC( DESCV( N_ ), NBV, MYCOL,
$ DESCV( CSRC_ ), NPCOL ) ) )
IOFFV = IIV + ( JJV-1 ) * LDV
MBC = DESCC( MB_ )
NBC = DESCC( NB_ )
NQCALL = NUMROC( DESCC( N_ ), NBC, MYCOL, DESCC( CSRC_ ), NPCOL )
CALL INFOG2L( IC, JC, DESCC, NPROW, NPCOL, MYROW, MYCOL, IIC1,
$ JJC1, ICROW1, ICCOL1 )
LDC = DESCC( LLD_ )
IIC1 = MIN( IIC1, LDC )
JJC1 = MIN( JJC1, MAX( 1, NQCALL ) )
*
IF( LEFT ) THEN
IROFFC1 = MOD( IC-1, MBC )
MPC1 = NUMROC( K+IROFFC1, MBC, MYROW, ICROW1, NPROW )
IF( MYROW.EQ.ICROW1 )
$ MPC1 = MPC1 - IROFFC1
ICOFFC1 = MOD( JC-1, NBC )
NQC1 = NUMROC( N+ICOFFC1, NBC, MYCOL, ICCOL1, NPCOL )
IF( MYCOL.EQ.ICCOL1 )
$ NQC1 = NQC1 - ICOFFC1
CALL INFOG2L( IC+M-L, JC, DESCC, NPROW, NPCOL, MYROW, MYCOL,
$ IIC2, JJC2, ICROW2, ICCOL2 )
IROFFC2 = MOD( IC+M-L-1, MBC )
MPC2 = NUMROC( L+IROFFC2, MBC, MYROW, ICROW2, NPROW )
IF( MYROW.EQ.ICROW2 )
$ MPC2 = MPC2 - IROFFC2
ICOFFC2 = ICOFFC1
NQC2 = NQC1
ELSE
IROFFC1 = MOD( IC-1, MBC )
MPC1 = NUMROC( M+IROFFC1, MBC, MYROW, ICROW1, NPROW )
IF( MYROW.EQ.ICROW1 )
$ MPC1 = MPC1 - IROFFC1
ICOFFC1 = MOD( JC-1, NBC )
NQC1 = NUMROC( K+ICOFFC1, NBC, MYCOL, ICCOL1, NPCOL )
IF( MYCOL.EQ.ICCOL1 )
$ NQC1 = NQC1 - ICOFFC1
CALL INFOG2L( IC, JC+N-L, DESCC, NPROW, NPCOL, MYROW, MYCOL,
$ IIC2, JJC2, ICROW2, ICCOL2 )
IROFFC2 = IROFFC1
MPC2 = MPC1
ICOFFC2 = MOD( JC+N-L-1, NBC )
NQC2 = NUMROC( L+ICOFFC2, NBC, MYCOL, ICCOL2, NPCOL )
IF( MYCOL.EQ.ICCOL2 )
$ NQC2 = NQC2 - ICOFFC2
END IF
IIC2 = MIN( IIC2, LDC )
JJC2 = MIN( JJC2, NQCALL )
IOFFC2 = IIC2 + ( JJC2-1 ) * LDC
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form Q*sub( C ) or Q'*sub( C )
*
* IROFFC2 = ICOFFV is required by the current transposition
* routine PBZTRAN
*
MQV0 = NUMROC( M+ICOFFV, NBV, MYCOL, IVCOL, NPCOL )
IF( MYCOL.EQ.IVCOL ) THEN
MQV = MQV0 - ICOFFV
ELSE
MQV = MQV0
END IF
IF( MYROW.EQ.ICROW2 ) THEN
MPC20 = MPC2 + IROFFC2
ELSE
MPC20 = MPC2
END IF
*
* Locally V( IOFFV ) is K x MQV, C( IOFFC2 ) is MPC2 x NQC2
* WORK( IPV ) is MPC20 x K = [ . V( IOFFV ) ]'
* WORK( IPW ) is K x MQV0 = [ . V( IOFFV ) ]
* WORK( IPT ) is the workspace for PBZTRAN
*
IPV = 1
IPW = IPV + MPC20 * K
IPT = IPW + K * MQV0
LV = MAX( 1, MPC20 )
LW = MAX( 1, K )
*
IF( MYROW.EQ.IVROW ) THEN
IF( MYCOL.EQ.IVCOL ) THEN
CALL ZLAMOV( 'All', K, MQV, V( IOFFV ), LDV,
$ WORK( IPW+ICOFFV*LW ), LW )
ELSE
CALL ZLAMOV( 'All', K, MQV, V( IOFFV ), LDV,
$ WORK( IPW ), LW )
END IF
END IF
*
* WORK( IPV ) = WORK( IPW )' (replicated) is MPC20 x K
*
CALL PBZTRAN( ICTXT, 'Rowwise', 'Conjugate transpose', K,
$ M+ICOFFV, DESCV( NB_ ), WORK( IPW ), LW, ZERO,
$ WORK( IPV ), LV, IVROW, IVCOL, ICROW2, -1,
$ WORK( IPT ) )
*
* WORK( IPV ) = ( . V )' -> WORK( IPV ) = V' is MPC2 x K
*
IF( MYROW.EQ.ICROW2 )
$ IPV = IPV + IROFFC2
*
* WORK( IPW ) becomes NQC2 x K = C( IOFFC2 )' * V'
* WORK( IPW ) = C( IOFFC2 )' * V' (NQC2 x MPC2 x K) -> NQC2 x K
*
LW = MAX( 1, NQC2 )
*
IF( MPC2.GT.0 ) THEN
CALL ZGEMM( 'Transpose', 'No transpose', NQC2, K, MPC2,
$ ONE, C( IOFFC2 ), LDC, WORK( IPV ), LV, ZERO,
$ WORK( IPW ), LW )
ELSE
CALL ZLASET( 'All', NQC2, K, ZERO, ZERO, WORK( IPW ), LW )
END IF
*
* WORK( IPW ) = WORK( IPW ) + C1 ( NQC1 = NQC2 )
*
IF( MPC1.GT.0 ) THEN
MYDIST = MOD( MYROW-ICROW1+NPROW, NPROW )
ITOP = MAX( 0, MYDIST * MBC - IROFFC1 )
IIBEG = IIC1
IIEND = IIC1 + MPC1 - 1
IINXT = MIN( ICEIL( IIBEG, MBC ) * MBC, IIEND )
*
10 CONTINUE
IF( IIBEG.LE.IINXT ) THEN
CALL PBZMATADD( ICTXT, 'Transpose', NQC2, IINXT-IIBEG+1,
$ ONE, C( IIBEG+(JJC1-1)*LDC ), LDC, ONE,
$ WORK( IPW+ITOP ), LW )
MYDIST = MYDIST + NPROW
ITOP = MYDIST * MBC - IROFFC1
IIBEG = IINXT +1
IINXT = MIN( IINXT+MBC, IIEND )
GO TO 10
END IF
END IF
*
CALL ZGSUM2D( ICTXT, 'Columnwise', ' ', NQC2, K, WORK( IPW ),
$ LW, IVROW, MYCOL )
*
* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
IF( MYROW.EQ.IVROW ) THEN
IF( MYCOL.EQ.IVCOL ) THEN
*
* Broadcast the block reflector to the other columns.
*
CALL ZTRBS2D( ICTXT, 'Rowwise', ' ', 'Lower', 'Non unit',
$ K, K, T, MBV )
ELSE
CALL ZTRBR2D( ICTXT, 'Rowwise', ' ', 'Lower', 'Non unit',
$ K, K, T, MBV, MYROW, IVCOL )
END IF
CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non unit', NQC2, K,
$ ONE, T, MBV, WORK( IPW ), LW )
*
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', NQC2, K,
$ WORK( IPW ), LW )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', NQC2, K,
$ WORK( IPW ), LW, IVROW, MYCOL )
END IF
*
* C1 = C1 - WORK( IPW )
*
IF( MPC1.GT.0 ) THEN
MYDIST = MOD( MYROW-ICROW1+NPROW, NPROW )
ITOP = MAX( 0, MYDIST * MBC - IROFFC1 )
IIBEG = IIC1
IIEND = IIC1 + MPC1 - 1
IINXT = MIN( ICEIL( IIBEG, MBC ) * MBC, IIEND )
*
20 CONTINUE
IF( IIBEG.LE.IINXT ) THEN
CALL PBZMATADD( ICTXT, 'Transpose', IINXT-IIBEG+1, NQC2,
$ -ONE, WORK( IPW+ITOP ), LW, ONE,
$ C( IIBEG+(JJC1-1)*LDC ), LDC )
MYDIST = MYDIST + NPROW
ITOP = MYDIST * MBC - IROFFC1
IIBEG = IINXT +1
IINXT = MIN( IINXT+MBC, IIEND )
GO TO 20
END IF
END IF
*
* C2 C2 - V' * W'
* C( IOFFC2 ) = C( IOFFC2 ) - WORK( IPV ) * WORK( IPW )'
* MPC2 x NQC2 MPC2 x K K x NQC2
*
DO 30 J = 1, K
CALL ZLACGV( MPC2, WORK( IPV+(J-1)*LV ), 1 )
30 CONTINUE
CALL ZGEMM( 'No transpose', 'Transpose', MPC2, NQC2, K, -ONE,
$ WORK( IPV ), LV, WORK( IPW ), LW, ONE,
$ C( IOFFC2 ), LDC )
*
ELSE
*
* Form sub( C ) * Q or sub( C ) * Q'
*
* Locally V( IOFFV ) is K x NQV, C( IOFFC2 ) is MPC2 x NQC2
* WORK( IPV ) is K x NQV = V( IOFFV ), NQV = NQC2
* WORK( IPW ) is MPC2 x K = C( IOFFC2 ) * V( IOFFV )'
*
IPV = 1
IPW = IPV + K * NQC2
LV = MAX( 1, K )
LW = MAX( 1, MPC2 )
*
* Broadcast V to the other process rows.
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
IF( MYROW.EQ.IVROW ) THEN
CALL ZGEBS2D( ICTXT, 'Columnwise', COLBTOP, K, NQC2,
$ V( IOFFV ), LDV )
IF( MYCOL.EQ.IVCOL )
$ CALL ZTRBS2D( ICTXT, 'Columnwise', COLBTOP, 'Lower',
$ 'Non unit', K, K, T, MBV )
CALL ZLAMOV( 'All', K, NQC2, V( IOFFV ), LDV, WORK( IPV ),
$ LV )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', COLBTOP, K, NQC2,
$ WORK( IPV ), LV, IVROW, MYCOL )
IF( MYCOL.EQ.IVCOL )
$ CALL ZTRBR2D( ICTXT, 'Columnwise', COLBTOP, 'Lower',
$ 'Non unit', K, K, T, MBV, IVROW, MYCOL )
END IF
*
* WORK( IPV ) is K x NQC2 = V = V( IOFFV )
* WORK( IPW ) = C( IOFFC2 ) * V' (MPC2 x NQC2 x K) -> MPC2 x K
*
IF( NQC2.GT.0 ) THEN
CALL ZGEMM( 'No Transpose', 'Transpose', MPC2, K, NQC2,
$ ONE, C( IOFFC2 ), LDC, WORK( IPV ), LV, ZERO,
$ WORK( IPW ), LW )
ELSE
CALL ZLASET( 'All', MPC2, K, ZERO, ZERO, WORK( IPW ), LW )
END IF
*
* WORK( IPW ) = WORK( IPW ) + C1 ( MPC1 = MPC2 )
*
IF( NQC1.GT.0 ) THEN
MYDIST = MOD( MYCOL-ICCOL1+NPCOL, NPCOL )
ILEFT = MAX( 0, MYDIST * NBC - ICOFFC1 )
JJBEG = JJC1
JJEND = JJC1 + NQC1 - 1
JJNXT = MIN( ICEIL( JJBEG, NBC ) * NBC, JJEND )
*
40 CONTINUE
IF( JJBEG.LE.JJNXT ) THEN
CALL PBZMATADD( ICTXT, 'No transpose', MPC2,
$ JJNXT-JJBEG+1, ONE,
$ C( IIC1+(JJBEG-1)*LDC ), LDC, ONE,
$ WORK( IPW+ILEFT*LW ), LW )
MYDIST = MYDIST + NPCOL
ILEFT = MYDIST * NBC - ICOFFC1
JJBEG = JJNXT +1
JJNXT = MIN( JJNXT+NBC, JJEND )
GO TO 40
END IF
END IF
*
CALL ZGSUM2D( ICTXT, 'Rowwise', ' ', MPC2, K, WORK( IPW ),
$ LW, MYROW, IVCOL )
*
* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
IF( MYCOL.EQ.IVCOL ) THEN
DO 50 J = 1, K
CALL ZLACGV( K-J+1, T( J+(J-1)*MBV ), 1 )
50 CONTINUE
CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non unit', MPC2, K,
$ ONE, T, MBV, WORK( IPW ), LW )
CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', MPC2, K, WORK( IPW ),
$ LW )
DO 60 J = 1, K
CALL ZLACGV( K-J+1, T( J+(J-1)*MBV ), 1 )
60 CONTINUE
ELSE
CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', MPC2, K, WORK( IPW ),
$ LW, MYROW, IVCOL )
END IF
*
* C1 = C1 - WORK( IPW )
*
IF( NQC1.GT.0 ) THEN
MYDIST = MOD( MYCOL-ICCOL1+NPCOL, NPCOL )
ILEFT = MAX( 0, MYDIST * NBC - ICOFFC1 )
JJBEG = JJC1
JJEND = JJC1 + NQC1 - 1
JJNXT = MIN( ICEIL( JJBEG, NBC ) * NBC, JJEND )
*
70 CONTINUE
IF( JJBEG.LE.JJNXT ) THEN
CALL PBZMATADD( ICTXT, 'No transpose', MPC2,
$ JJNXT-JJBEG+1, -ONE,
$ WORK( IPW+ILEFT*LW ), LW, ONE,
$ C( IIC1+(JJBEG-1)*LDC ), LDC )
MYDIST = MYDIST + NPCOL
ILEFT = MYDIST * NBC - ICOFFC1
JJBEG = JJNXT +1
JJNXT = MIN( JJNXT+NBC, JJEND )
GO TO 70
END IF
END IF
*
* C2 C2 - W * conjg( V )
* C( IOFFC ) = C( IOFFC ) - WORK( IPW ) * conjg( WORK( IPV ) )
* MPC2 x NQC2 MPC2 x K K x NQC2
*
DO 80 J = 1, NQC2
CALL ZLACGV( K, WORK( IPV+(J-1)*LV ), 1 )
80 CONTINUE
IF( IOFFC2.GT.0 )
$ CALL ZGEMM( 'No transpose', 'No transpose', MPC2, NQC2, K,
$ -ONE, WORK( IPW ), LW, WORK( IPV ), LV, ONE,
$ C( IOFFC2 ), LDC )
*
END IF
*
RETURN
*
* End of PZLARZB
*
END
|