File: pzlarzb.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (625 lines) | stat: -rw-r--r-- 23,936 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
      SUBROUTINE PZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
     $                    IV, JV, DESCV, T, C, IC, JC, DESCC, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
      INTEGER            IC, IV, JC, JV, K, L, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCC( * ), DESCV( * )
      COMPLEX*16         C( * ), T( * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLARZB applies a complex block reflector Q or its conjugate
*  transpose Q**H to a complex M-by-N distributed matrix sub( C )
*  denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right.
*
*  Q is a product of k elementary reflectors as returned by PZTZRZF.
*
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  SIDE    (global input) CHARACTER
*          = 'L': apply Q or Q**H from the Left;
*          = 'R': apply Q or Q**H from the Right.
*
*  TRANS   (global input) CHARACTER
*          = 'N':  No transpose, apply Q;
*          = 'C':  Conjugate transpose, apply Q**H.
*
*  DIRECT  (global input) CHARACTER
*          Indicates how H is formed from a product of elementary
*          reflectors
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (global input) CHARACTER
*          Indicates how the vectors which define the elementary
*          reflectors are stored:
*          = 'C': Columnwise                        (not supported yet)
*          = 'R': Rowwise
*
*  M       (global input) INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( C ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( C ). N >= 0.
*
*  K       (global input) INTEGER
*          The order of the matrix T (= the number of elementary
*          reflectors whose product defines the block reflector).
*
*  L       (global input) INTEGER
*          The columns of the distributed submatrix sub( A ) containing
*          the meaningful part of the Householder reflectors.
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
*  V       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_V, LOCc(JV+M-1)) if SIDE = 'L',
*          (LLD_V, LOCc(JV+N-1)) if SIDE = 'R'. It contains the local
*          pieces of the distributed vectors V representing the
*          Householder transformation as returned by PZTZRZF.
*          LLD_V >= LOCr(IV+K-1).
*
*  IV      (global input) INTEGER
*          The row index in the global array V indicating the first
*          row of sub( V ).
*
*  JV      (global input) INTEGER
*          The column index in the global array V indicating the
*          first column of sub( V ).
*
*  DESCV   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix V.
*
*  T       (local input) COMPLEX*16 array, dimension MB_V by MB_V
*          The lower triangular matrix T in the representation of the
*          block reflector.
*
*  C       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
*          On entry, the M-by-N distributed matrix sub( C ). On exit,
*          sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or
*          sub( C )*Q or sub( C )*Q'.
*
*  IC      (global input) INTEGER
*          The row index in the global array C indicating the first
*          row of sub( C ).
*
*  JC      (global input) INTEGER
*          The column index in the global array C indicating the
*          first column of sub( C ).
*
*  DESCC   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix C.
*
*  WORK    (local workspace) COMPLEX*16 array, dimension (LWORK)
*          If STOREV = 'C',
*            if SIDE = 'L',
*              LWORK >= ( NqC0 + MpC0 ) * K
*            else if SIDE = 'R',
*              LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC,
*                         NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ),
*                         MpC0 ) ) * K
*            end if
*          else if STOREV = 'R',
*            if SIDE = 'L',
*              LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC,
*                         MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ),
*                         NqC0 ) ) * K
*            else if SIDE = 'R',
*              LWORK >= ( MpC0 + NqC0 ) * K
*            end if
*          end if
*
*          where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
*
*          IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ),
*          IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ),
*          IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ),
*          MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ),
*          NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
*
*          IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
*          ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
*          ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
*          MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
*          NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ),
*          NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
*
*          ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1)
*  must verify some alignment properties, namely the following
*  expressions should be true:
*
*  If STOREV = 'Columnwise'
*    If SIDE = 'Left',
*      ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW )
*    If SIDE = 'Right',
*      ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC )
*  else if STOREV = 'Rowwise'
*    If SIDE = 'Left',
*      ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC )
*    If SIDE = 'Right',
*      ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL )
*  end if
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX*16         ONE, ZERO
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
     $                     ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT
      CHARACTER          COLBTOP, TRANST
      INTEGER            ICCOL1, ICCOL2, ICOFFC1, ICOFFC2, ICOFFV,
     $                   ICROW1, ICROW2, ICTXT, IIBEG, IIC1, IIC2,
     $                   IIEND, IINXT, IIV, ILEFT, INFO, IOFFC2, IOFFV,
     $                   IPT, IPV, IPW, IROFFC1, IROFFC2, ITOP, IVCOL,
     $                   IVROW, J, JJBEG, JJEND, JJNXT, JJC1, JJC2, JJV,
     $                   LDC, LDV, LV, LW, MBC, MBV, MPC1, MPC2, MPC20,
     $                   MQV, MQV0, MYCOL, MYDIST, MYROW, NBC, NBV,
     $                   NPCOL, NPROW, NQC1, NQC2, NQCALL, NQV
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_ABORT, BLACS_GRIDINFO, INFOG2L,
     $                   PBZMATADD, PB_TOPGET, PXERBLA, PBZTRAN,
     $                   ZGEBR2D, ZGEBS2D, ZGEMM,
     $                   ZGSUM2D, ZLACGV, ZLAMOV, ZLASET,
     $                   ZTRBR2D, ZTRBS2D, ZTRMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, NUMROC
      EXTERNAL           ICEIL, LSAME, NUMROC
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 .OR. K.LE.0 )
     $   RETURN
*
*     Get grid parameters
*
      ICTXT = DESCC( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Check for currently supported options
*
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PZLARZB', -INFO )
         CALL BLACS_ABORT( ICTXT, 1 )
         RETURN
      END IF
*
      LEFT = LSAME( SIDE, 'L' )
      IF( LSAME( TRANS, 'N' ) ) THEN
          TRANST = 'C'
      ELSE
          TRANST = 'N'
      END IF
*
      CALL INFOG2L( IV, JV, DESCV, NPROW, NPCOL, MYROW, MYCOL, IIV, JJV,
     $              IVROW, IVCOL )
      MBV = DESCV( MB_ )
      NBV = DESCV( NB_ )
      ICOFFV = MOD( JV-1, NBV )
      NQV = NUMROC( L+ICOFFV, NBV, MYCOL, IVCOL, NPCOL )
      IF( MYCOL.EQ.IVCOL )
     $   NQV = NQV - ICOFFV
      LDV = DESCV( LLD_ )
      IIV = MIN( IIV, LDV )
      JJV = MIN( JJV, MAX( 1, NUMROC( DESCV( N_ ), NBV, MYCOL,
     $                                DESCV( CSRC_ ), NPCOL ) ) )
      IOFFV = IIV + ( JJV-1 ) * LDV
      MBC = DESCC( MB_ )
      NBC = DESCC( NB_ )
      NQCALL = NUMROC( DESCC( N_ ), NBC, MYCOL, DESCC( CSRC_ ), NPCOL )
      CALL INFOG2L( IC, JC, DESCC, NPROW, NPCOL, MYROW, MYCOL, IIC1,
     $              JJC1, ICROW1, ICCOL1 )
      LDC = DESCC( LLD_ )
      IIC1 = MIN( IIC1, LDC )
      JJC1 = MIN( JJC1, MAX( 1, NQCALL ) )
*
      IF( LEFT ) THEN
         IROFFC1 = MOD( IC-1, MBC )
         MPC1 = NUMROC( K+IROFFC1, MBC, MYROW, ICROW1, NPROW )
         IF( MYROW.EQ.ICROW1 )
     $      MPC1 = MPC1 - IROFFC1
         ICOFFC1 = MOD( JC-1, NBC )
         NQC1 = NUMROC( N+ICOFFC1, NBC, MYCOL, ICCOL1, NPCOL )
         IF( MYCOL.EQ.ICCOL1 )
     $      NQC1 = NQC1 - ICOFFC1
         CALL INFOG2L( IC+M-L, JC, DESCC, NPROW, NPCOL, MYROW, MYCOL,
     $                 IIC2, JJC2, ICROW2, ICCOL2 )
         IROFFC2 = MOD( IC+M-L-1, MBC )
         MPC2 = NUMROC( L+IROFFC2, MBC, MYROW, ICROW2, NPROW )
         IF( MYROW.EQ.ICROW2 )
     $      MPC2 = MPC2 - IROFFC2
         ICOFFC2 = ICOFFC1
         NQC2 = NQC1
      ELSE
         IROFFC1 = MOD( IC-1, MBC )
         MPC1 = NUMROC( M+IROFFC1, MBC, MYROW, ICROW1, NPROW )
         IF( MYROW.EQ.ICROW1 )
     $      MPC1 = MPC1 - IROFFC1
         ICOFFC1 = MOD( JC-1, NBC )
         NQC1 = NUMROC( K+ICOFFC1, NBC, MYCOL, ICCOL1, NPCOL )
         IF( MYCOL.EQ.ICCOL1 )
     $      NQC1 = NQC1 - ICOFFC1
         CALL INFOG2L( IC, JC+N-L, DESCC, NPROW, NPCOL, MYROW, MYCOL,
     $                 IIC2, JJC2, ICROW2, ICCOL2 )
         IROFFC2 = IROFFC1
         MPC2 = MPC1
         ICOFFC2 = MOD( JC+N-L-1, NBC )
         NQC2 = NUMROC( L+ICOFFC2, NBC, MYCOL, ICCOL2, NPCOL )
         IF( MYCOL.EQ.ICCOL2 )
     $      NQC2 = NQC2 - ICOFFC2
      END IF
      IIC2 = MIN( IIC2, LDC )
      JJC2 = MIN( JJC2, NQCALL )
      IOFFC2 = IIC2 + ( JJC2-1 ) * LDC
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form Q*sub( C ) or Q'*sub( C )
*
*        IROFFC2 = ICOFFV is required by the current transposition
*        routine PBZTRAN
*
         MQV0 = NUMROC( M+ICOFFV, NBV, MYCOL, IVCOL, NPCOL )
         IF( MYCOL.EQ.IVCOL ) THEN
            MQV = MQV0 - ICOFFV
         ELSE
            MQV = MQV0
         END IF
         IF( MYROW.EQ.ICROW2 ) THEN
            MPC20 = MPC2 + IROFFC2
         ELSE
            MPC20 = MPC2
         END IF
*
*        Locally V( IOFFV ) is K x MQV, C( IOFFC2 ) is MPC2 x NQC2
*        WORK( IPV ) is MPC20 x K = [ . V( IOFFV ) ]'
*        WORK( IPW ) is K x MQV0  = [ . V( IOFFV ) ]
*        WORK( IPT ) is the workspace for PBZTRAN
*
         IPV = 1
         IPW = IPV + MPC20 * K
         IPT = IPW + K * MQV0
         LV = MAX( 1, MPC20 )
         LW = MAX( 1, K )
*
         IF( MYROW.EQ.IVROW ) THEN
            IF( MYCOL.EQ.IVCOL ) THEN
               CALL ZLAMOV( 'All', K, MQV, V( IOFFV ), LDV,
     $                      WORK( IPW+ICOFFV*LW ), LW )
            ELSE
               CALL ZLAMOV( 'All', K, MQV, V( IOFFV ), LDV,
     $                      WORK( IPW ), LW )
            END IF
         END IF
*
*        WORK( IPV ) = WORK( IPW )' (replicated) is MPC20 x K
*
         CALL PBZTRAN( ICTXT, 'Rowwise', 'Conjugate transpose', K,
     $                 M+ICOFFV, DESCV( NB_ ), WORK( IPW ), LW, ZERO,
     $                 WORK( IPV ), LV, IVROW, IVCOL, ICROW2, -1,
     $                 WORK( IPT ) )
*
*        WORK( IPV ) = ( . V )' -> WORK( IPV ) = V' is MPC2 x K
*
         IF( MYROW.EQ.ICROW2 )
     $      IPV = IPV + IROFFC2
*
*        WORK( IPW ) becomes NQC2 x K = C( IOFFC2 )' * V'
*        WORK( IPW ) = C( IOFFC2 )' * V'  (NQC2 x MPC2 x K) -> NQC2 x K
*
         LW = MAX( 1, NQC2 )
*
         IF( MPC2.GT.0 ) THEN
            CALL ZGEMM( 'Transpose', 'No transpose', NQC2, K, MPC2,
     $                  ONE, C( IOFFC2 ), LDC, WORK( IPV ), LV, ZERO,
     $                  WORK( IPW ), LW )
         ELSE
            CALL ZLASET( 'All', NQC2, K, ZERO, ZERO, WORK( IPW ), LW )
         END IF
*
*        WORK( IPW ) = WORK( IPW ) + C1 ( NQC1 = NQC2 )
*
         IF( MPC1.GT.0 ) THEN
            MYDIST = MOD( MYROW-ICROW1+NPROW, NPROW )
            ITOP = MAX( 0, MYDIST * MBC - IROFFC1 )
            IIBEG = IIC1
            IIEND = IIC1 + MPC1 - 1
            IINXT = MIN( ICEIL( IIBEG, MBC ) * MBC, IIEND )
*
   10       CONTINUE
            IF( IIBEG.LE.IINXT ) THEN
               CALL PBZMATADD( ICTXT, 'Transpose', NQC2, IINXT-IIBEG+1,
     $                         ONE, C( IIBEG+(JJC1-1)*LDC ), LDC, ONE,
     $                         WORK( IPW+ITOP ), LW )
               MYDIST = MYDIST + NPROW
               ITOP = MYDIST * MBC - IROFFC1
               IIBEG = IINXT +1
               IINXT = MIN( IINXT+MBC, IIEND )
               GO TO 10
            END IF
         END IF
*
         CALL ZGSUM2D( ICTXT, 'Columnwise', ' ', NQC2, K, WORK( IPW ),
     $                 LW, IVROW, MYCOL )
*
*        WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
         IF( MYROW.EQ.IVROW ) THEN
            IF( MYCOL.EQ.IVCOL ) THEN
*
*              Broadcast the block reflector to the other columns.
*
               CALL ZTRBS2D( ICTXT, 'Rowwise', ' ', 'Lower', 'Non unit',
     $                       K, K, T, MBV )
            ELSE
               CALL ZTRBR2D( ICTXT, 'Rowwise', ' ', 'Lower', 'Non unit',
     $                       K, K, T, MBV, MYROW, IVCOL )
            END IF
            CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non unit', NQC2, K,
     $                  ONE, T, MBV, WORK( IPW ), LW )
*
            CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', NQC2, K,
     $                    WORK( IPW ), LW )
         ELSE
            CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', NQC2, K,
     $                    WORK( IPW ), LW, IVROW, MYCOL )
         END IF
*
*        C1 = C1 - WORK( IPW )
*
         IF( MPC1.GT.0 ) THEN
            MYDIST = MOD( MYROW-ICROW1+NPROW, NPROW )
            ITOP = MAX( 0, MYDIST * MBC - IROFFC1 )
            IIBEG = IIC1
            IIEND = IIC1 + MPC1 - 1
            IINXT = MIN( ICEIL( IIBEG, MBC ) * MBC, IIEND )
*
   20       CONTINUE
            IF( IIBEG.LE.IINXT ) THEN
               CALL PBZMATADD( ICTXT, 'Transpose', IINXT-IIBEG+1, NQC2,
     $                         -ONE, WORK( IPW+ITOP ), LW, ONE,
     $                         C( IIBEG+(JJC1-1)*LDC ), LDC )
               MYDIST = MYDIST + NPROW
               ITOP = MYDIST * MBC - IROFFC1
               IIBEG = IINXT +1
               IINXT = MIN( IINXT+MBC, IIEND )
               GO TO 20
            END IF
         END IF
*
*            C2            C2      -     V'      *     W'
*        C( IOFFC2 ) = C( IOFFC2 ) - WORK( IPV ) * WORK( IPW )'
*                      MPC2 x NQC2    MPC2 x K      K x NQC2
*
         DO 30 J = 1, K
            CALL ZLACGV( MPC2, WORK( IPV+(J-1)*LV ), 1 )
   30    CONTINUE
         CALL ZGEMM( 'No transpose', 'Transpose', MPC2, NQC2, K, -ONE,
     $               WORK( IPV ), LV, WORK( IPW ), LW, ONE,
     $               C( IOFFC2 ), LDC )
*
      ELSE
*
*        Form sub( C ) * Q or sub( C ) * Q'
*
*        Locally V( IOFFV ) is K x NQV, C( IOFFC2 ) is MPC2 x NQC2
*        WORK( IPV ) is K x NQV = V( IOFFV ), NQV = NQC2
*        WORK( IPW ) is MPC2 x K = C( IOFFC2 ) * V( IOFFV )'
*
         IPV = 1
         IPW = IPV + K * NQC2
         LV = MAX( 1, K )
         LW = MAX( 1, MPC2 )
*
*        Broadcast V to the other process rows.
*
         CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
         IF( MYROW.EQ.IVROW ) THEN
            CALL ZGEBS2D( ICTXT, 'Columnwise', COLBTOP, K, NQC2,
     $                    V( IOFFV ), LDV )
            IF( MYCOL.EQ.IVCOL )
     $         CALL ZTRBS2D( ICTXT, 'Columnwise', COLBTOP, 'Lower',
     $                       'Non unit', K, K, T, MBV )
            CALL ZLAMOV( 'All', K, NQC2, V( IOFFV ), LDV, WORK( IPV ),
     $                   LV )
         ELSE
            CALL ZGEBR2D( ICTXT, 'Columnwise', COLBTOP, K, NQC2,
     $                    WORK( IPV ), LV, IVROW, MYCOL )
            IF( MYCOL.EQ.IVCOL )
     $         CALL ZTRBR2D( ICTXT, 'Columnwise', COLBTOP, 'Lower',
     $                       'Non unit', K, K, T, MBV, IVROW, MYCOL )
         END IF
*
*        WORK( IPV ) is K x NQC2 = V = V( IOFFV )
*        WORK( IPW ) = C( IOFFC2 ) * V'  (MPC2 x NQC2 x K) -> MPC2 x K
*
         IF( NQC2.GT.0 ) THEN
            CALL ZGEMM( 'No Transpose', 'Transpose', MPC2, K, NQC2,
     $                 ONE, C( IOFFC2 ), LDC, WORK( IPV ), LV, ZERO,
     $                 WORK( IPW ), LW )
         ELSE
            CALL ZLASET( 'All', MPC2, K, ZERO, ZERO, WORK( IPW ), LW )
         END IF
*
*        WORK( IPW ) = WORK( IPW ) + C1 ( MPC1 = MPC2 )
*
         IF( NQC1.GT.0 ) THEN
            MYDIST = MOD( MYCOL-ICCOL1+NPCOL, NPCOL )
            ILEFT = MAX( 0, MYDIST * NBC - ICOFFC1 )
            JJBEG = JJC1
            JJEND = JJC1 + NQC1 - 1
            JJNXT = MIN( ICEIL( JJBEG, NBC ) * NBC, JJEND )
*
   40       CONTINUE
            IF( JJBEG.LE.JJNXT ) THEN
               CALL PBZMATADD( ICTXT, 'No transpose', MPC2,
     $                         JJNXT-JJBEG+1, ONE,
     $                         C( IIC1+(JJBEG-1)*LDC ), LDC, ONE,
     $                         WORK( IPW+ILEFT*LW ), LW )
               MYDIST = MYDIST + NPCOL
               ILEFT = MYDIST * NBC - ICOFFC1
               JJBEG = JJNXT +1
               JJNXT = MIN( JJNXT+NBC, JJEND )
               GO TO 40
            END IF
         END IF
*
         CALL ZGSUM2D( ICTXT, 'Rowwise', ' ', MPC2, K, WORK( IPW ),
     $                 LW, MYROW, IVCOL )
*
*        WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
*
         IF( MYCOL.EQ.IVCOL ) THEN
            DO 50 J = 1, K
               CALL ZLACGV( K-J+1, T( J+(J-1)*MBV ), 1 )
   50       CONTINUE
            CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non unit', MPC2, K,
     $                  ONE, T, MBV, WORK( IPW ), LW )
            CALL ZGEBS2D( ICTXT, 'Rowwise', ' ', MPC2, K, WORK( IPW ),
     $                    LW )
            DO 60 J = 1, K
               CALL ZLACGV( K-J+1, T( J+(J-1)*MBV ), 1 )
   60       CONTINUE
         ELSE
            CALL ZGEBR2D( ICTXT, 'Rowwise', ' ', MPC2, K, WORK( IPW ),
     $                    LW, MYROW, IVCOL )
         END IF
*
*        C1 = C1 - WORK( IPW )
*
         IF( NQC1.GT.0 ) THEN
            MYDIST = MOD( MYCOL-ICCOL1+NPCOL, NPCOL )
            ILEFT = MAX( 0, MYDIST * NBC - ICOFFC1 )
            JJBEG = JJC1
            JJEND = JJC1 + NQC1 - 1
            JJNXT = MIN( ICEIL( JJBEG, NBC ) * NBC, JJEND )
*
   70       CONTINUE
            IF( JJBEG.LE.JJNXT ) THEN
               CALL PBZMATADD( ICTXT, 'No transpose', MPC2,
     $                         JJNXT-JJBEG+1, -ONE,
     $                         WORK( IPW+ILEFT*LW ), LW, ONE,
     $                         C( IIC1+(JJBEG-1)*LDC ), LDC )
               MYDIST = MYDIST + NPCOL
               ILEFT = MYDIST * NBC - ICOFFC1
               JJBEG = JJNXT +1
               JJNXT = MIN( JJNXT+NBC, JJEND )
               GO TO 70
            END IF
         END IF
*
*            C2           C2      -     W       *  conjg( V )
*        C( IOFFC ) = C( IOFFC )  - WORK( IPW ) * conjg( WORK( IPV ) )
*                     MPC2 x NQC2    MPC2 x K      K x NQC2
*
         DO 80 J = 1, NQC2
            CALL ZLACGV( K, WORK( IPV+(J-1)*LV ), 1 )
   80    CONTINUE
         IF( IOFFC2.GT.0 )
     $      CALL ZGEMM( 'No transpose', 'No transpose', MPC2, NQC2, K,
     $                  -ONE, WORK( IPW ), LW, WORK( IPV ), LV, ONE,
     $                  C( IOFFC2 ), LDC )
*
      END IF
*
      RETURN
*
*     End of PZLARZB
*
      END