1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
SUBROUTINE PZMAX1( N, AMAX, INDX, X, IX, JX, DESCX, INCX )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER INDX, INCX, IX, JX, N
COMPLEX*16 AMAX
* ..
* .. Array Arguments ..
INTEGER DESCX( * )
COMPLEX*16 X( * )
* ..
*
* Purpose
* =======
*
* PZMAX1 computes the global index of the maximum element in absolute
* value of a distributed vector sub( X ). The global index is returned
* in INDX and the value is returned in AMAX,
*
* where sub( X ) denotes X(IX:IX+N-1,JX) if INCX = 1,
* X(IX,JX:JX+N-1) if INCX = M_X.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Because vectors may be viewed as a subclass of matrices, a
* distributed vector is considered to be a distributed matrix.
*
* When the result of a vector-oriented PBLAS call is a scalar, it will
* be made available only within the scope which owns the vector(s)
* being operated on. Let X be a generic term for the input vector(s).
* Then, the processes which receive the answer will be (note that if
* an operation involves more than one vector, the processes which re-
* ceive the result will be the union of the following calculation for
* each vector):
*
* If N = 1, M_X = 1 and INCX = 1, then one can't determine if a process
* row or process column owns the vector operand, therefore only the
* process of coordinate {RSRC_X, CSRC_X} receives the result;
*
* If INCX = M_X, then sub( X ) is a vector distributed over a process
* row. Each process part of this row receives the result;
*
* If INCX = 1, then sub( X ) is a vector distributed over a process
* column. Each process part of this column receives the result;
*
* Based on PZAMAX from Level 1 PBLAS. The change is to use the
* 'genuine' absolute value.
*
* The serial version was contributed to LAPACK by Nick Higham for use
* with ZLACON.
*
* Arguments
* =========
*
* N (global input) pointer to INTEGER
* The number of components of the distributed vector sub( X ).
* N >= 0.
*
* AMAX (global output) pointer to DOUBLE PRECISION
* The absolute value of the largest entry of the distributed
* vector sub( X ) only in the scope of sub( X ).
*
* INDX (global output) pointer to INTEGER
* The global index of the element of the distributed vector
* sub( X ) whose real part has maximum absolute value.
*
* X (local input) COMPLEX*16 array containing the local
* pieces of a distributed matrix of dimension of at least
* ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
* This array contains the entries of the distributed vector
* sub( X ).
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* INCX (global input) INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
* INCX must not be zero.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
CHARACTER CBTOP, CCTOP, RBTOP, RCTOP
INTEGER ICOFF, ICTXT, IDUMM, IIX, IROFF, IXCOL, IXROW,
$ JJX, LCINDX, LDX, MAXPOS, MYCOL, MYROW, NP,
$ NPCOL, NPROW, NQ
* ..
* .. Local Arrays ..
COMPLEX*16 WORK( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, IGEBR2D, IGEBS2D, INFOG2L,
$ PB_TOPGET, PZTREECOMB, ZCOMBAMAX1, ZGAMX2D
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IZMAX1, INDXL2G, NUMROC
EXTERNAL IZMAX1, INDXL2G, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, MOD, NINT
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCX( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Quick return if possible.
*
INDX = 0
AMAX = ZERO
IF( N.LE.0 )
$ RETURN
*
* Retrieve local information for vector X.
*
LDX = DESCX( LLD_ )
CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX, JJX,
$ IXROW, IXCOL )
*
IF( INCX.EQ.1 .AND. DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
INDX = JX
AMAX = X( IIX+(JJX-1)*LDX )
RETURN
END IF
*
* Find the maximum value and its index
*
IF( INCX.EQ.DESCX( M_ ) ) THEN
*
IF( MYROW.EQ.IXROW ) THEN
*
ICOFF = MOD( JX-1, DESCX( NB_ ) )
NQ = NUMROC( N+ICOFF, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
IF( MYCOL.EQ.IXCOL )
$ NQ = NQ-ICOFF
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', RBTOP )
*
IF( LSAME( RBTOP, ' ' ) ) THEN
*
IF( NQ.GT.0 ) THEN
LCINDX = JJX-1+IZMAX1( NQ, X( IIX+(JJX-1)*LDX ), LDX )
WORK( 1 ) = X( IIX+(LCINDX-1)*LDX )
WORK( 2 ) = DCMPLX( DBLE( INDXL2G( LCINDX,
$ DESCX( NB_ ), MYCOL, DESCX( CSRC_ ), NPCOL ) ) )
ELSE
WORK( 1 ) = ZERO
WORK( 2 ) = ZERO
END IF
*
CALL PZTREECOMB( ICTXT, 'Row', 2, WORK, -1, MYCOL,
$ ZCOMBAMAX1 )
*
AMAX = WORK( 1 )
IF( AMAX.EQ.ZERO ) THEN
INDX = JX
ELSE
INDX = NINT( DBLE( WORK( 2 ) ) )
END IF
*
ELSE
*
CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', RCTOP )
*
IF( NQ.GT.0 ) THEN
LCINDX = JJX-1+IZMAX1( NQ, X( IIX+(JJX-1)*LDX ), LDX )
AMAX = X( IIX + (LCINDX-1)*LDX )
ELSE
AMAX = ZERO
END IF
*
* Find the maximum value
*
CALL ZGAMX2D( ICTXT, 'Rowwise', RCTOP, 1, 1, AMAX, 1,
$ IDUMM, MAXPOS, 1, -1, MYROW )
*
IF( AMAX.NE.ZERO ) THEN
*
* Broadcast corresponding global index
*
IF( MYCOL.EQ.MAXPOS ) THEN
INDX = INDXL2G( LCINDX, DESCX( NB_ ), MYCOL,
$ DESCX( CSRC_ ), NPCOL )
CALL IGEBS2D( ICTXT, 'Rowwise', RBTOP, 1, 1, INDX,
$ 1 )
ELSE
CALL IGEBR2D( ICTXT, 'Rowwise', RBTOP, 1, 1, INDX,
$ 1, MYROW, MAXPOS )
END IF
*
ELSE
*
INDX = JX
*
END IF
*
END IF
*
END IF
*
ELSE
*
IF( MYCOL.EQ.IXCOL ) THEN
*
IROFF = MOD( IX-1, DESCX( MB_ ) )
NP = NUMROC( N+IROFF, DESCX( MB_ ), MYROW, IXROW, NPROW )
IF( MYROW.EQ.IXROW )
$ NP = NP-IROFF
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', CBTOP )
*
IF( LSAME( CBTOP, ' ' ) ) THEN
*
IF( NP.GT.0 ) THEN
LCINDX = IIX-1+IZMAX1( NP, X( IIX+(JJX-1)*LDX ), 1 )
WORK( 1 ) = X( LCINDX + (JJX-1)*LDX )
WORK( 2 ) = DCMPLX( DBLE( INDXL2G( LCINDX,
$ DESCX( MB_ ), MYROW, DESCX( RSRC_ ), NPROW ) ) )
ELSE
WORK( 1 ) = ZERO
WORK( 2 ) = ZERO
END IF
*
CALL PZTREECOMB( ICTXT, 'Column', 2, WORK, -1, MYCOL,
$ ZCOMBAMAX1 )
*
AMAX = WORK( 1 )
IF( AMAX.EQ.ZERO ) THEN
INDX = IX
ELSE
INDX = NINT( DBLE( WORK( 2 ) ) )
END IF
*
ELSE
*
CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', CCTOP )
*
IF( NP.GT.0 ) THEN
LCINDX = IIX-1+IZMAX1( NP, X( IIX+(JJX-1)*LDX ), 1 )
AMAX = X( LCINDX + (JJX-1)*LDX )
ELSE
AMAX = ZERO
END IF
*
* Find the maximum value
*
CALL ZGAMX2D( ICTXT, 'Columnwise', CCTOP, 1, 1, AMAX, 1,
$ MAXPOS, IDUMM, 1, -1, MYCOL )
*
IF( AMAX.NE.ZERO ) THEN
*
* Broadcast corresponding global index
*
IF( MYROW.EQ.MAXPOS ) THEN
INDX = INDXL2G( LCINDX, DESCX( MB_ ), MYROW,
$ DESCX( RSRC_ ), NPROW )
CALL IGEBS2D( ICTXT, 'Columnwise', CBTOP, 1, 1,
$ INDX, 1 )
ELSE
CALL IGEBR2D( ICTXT, 'Columnwise', CBTOP, 1, 1,
$ INDX, 1, MAXPOS, MYCOL )
END IF
*
ELSE
*
INDX = IX
*
END IF
*
END IF
*
END IF
*
END IF
*
RETURN
*
* End of PZMAX1
*
END
*
SUBROUTINE ZCOMBAMAX1 ( V1, V2 )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Array Arguments ..
COMPLEX*16 V1( 2 ), V2( 2 )
* ..
*
* Purpose
* =======
*
* ZCOMBAMAX1 finds the element having maximum real part absolute
* value as well as its corresponding globl index.
*
* Arguments
* =========
*
* V1 (local input/local output) COMPLEX*16 array of
* dimension 2. The first maximum absolute value element and
* its global index. V1(1) = AMAX, V1(2) = INDX.
*
* V2 (local input) COMPLEX*16 array of dimension 2.
* The second maximum absolute value element and its global
* index. V2(1) = AMAX, V2(2) = INDX.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE
* ..
* .. Executable Statements ..
*
IF( ABS( DBLE( V1( 1 ) ) ).LT.ABS( DBLE( V2( 1 ) ) ) ) THEN
V1( 1 ) = V2( 1 )
V1( 2 ) = V2( 2 )
END IF
*
RETURN
*
* End of ZCOMBAMAX1
*
END
|