File: pzposvx.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (667 lines) | stat: -rw-r--r-- 27,596 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
      SUBROUTINE PZPOSVX( FACT, UPLO, N, NRHS, A, IA, JA, DESCA, AF,
     $                    IAF, JAF, DESCAF, EQUED, SR, SC, B, IB, JB,
     $                    DESCB, X, IX, JX, DESCX, RCOND, FERR, BERR,
     $                    WORK, LWORK, RWORK, LRWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, UPLO
      INTEGER            IA, IAF, IB, INFO, IX, JA, JAF, JB, JX, LRWORK,
     $                   LWORK, N, NRHS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCAF( * ), DESCB( * ), DESCX( * )
      DOUBLE PRECISION   BERR( * ), FERR( * ), SC( * ),
     $                   SR( * ), RWORK( * )
      COMPLEX*16         A( * ), AF( * ),
     $                   B( * ), WORK( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
*  compute the solution to a complex system of linear equations
*
*        A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
*
*  where A(IA:IA+N-1,JA:JA+N-1) is an N-by-N matrix and X and
*  B(IB:IB+N-1,JB:JB+NRHS-1) are N-by-NRHS matrices.
*
*  Error bounds on the solution and a condition estimate are also
*  provided.  In the following comments Y denotes Y(IY:IY+M-1,JY:JY+K-1)
*  a M-by-K matrix where Y can be A, AF, B and X.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Description
*  ===========
*
*  The following steps are performed:
*
*  1. If FACT = 'E', real scaling factors are computed to equilibrate
*     the system:
*        diag(SR) * A * diag(SC) * inv(diag(SC)) * X = diag(SR) * B
*     Whether or not the system will be equilibrated depends on the
*     scaling of the matrix A, but if equilibration is used, A is
*     overwritten by diag(SR)*A*diag(SC) and B by diag(SR)*B.
*
*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
*     factor the matrix A (after equilibration if FACT = 'E') as
*        A = U**T* U,  if UPLO = 'U', or
*        A = L * L**T,  if UPLO = 'L',
*     where U is an upper triangular matrix and L is a lower triangular
*     matrix.
*
*  3. The factored form of A is used to estimate the condition number
*     of the matrix A.  If the reciprocal of the condition number is
*     less than machine precision, steps 4-6 are skipped.
*
*  4. The system of equations is solved for X using the factored form
*     of A.
*
*  5. Iterative refinement is applied to improve the computed solution
*     matrix and calculate error bounds and backward error estimates
*     for it.
*
*  6. If equilibration was used, the matrix X is premultiplied by
*     diag(SR) so that it solves the original system before
*     equilibration.
*
*  Arguments
*  =========
*
*  FACT    (global input) CHARACTER
*          Specifies whether or not the factored form of the matrix A is
*          supplied on entry, and if not, whether the matrix A should be
*          equilibrated before it is factored.
*          = 'F':  On entry, AF contains the factored form of A.
*                  If EQUED = 'Y', the matrix A has been equilibrated
*                  with scaling factors given by S.  A and AF will not
*                  be modified.
*          = 'N':  The matrix A will be copied to AF and factored.
*          = 'E':  The matrix A will be equilibrated if necessary, then
*                  copied to AF and factored.
*
*  UPLO    (global input) CHARACTER
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix A(IA:IA+N-1,JA:JA+N-1).
*          N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed submatrices B and X.  NRHS >= 0.
*
*  A       (local input/local output) COMPLEX*16 pointer into
*          the local memory to an array of local dimension
*          ( LLD_A, LOCc(JA+N-1) ).
*          On entry, the Hermitian matrix A, except if FACT = 'F' and
*          EQUED = 'Y', then A must contain the equilibrated matrix
*          diag(SR)*A*diag(SC).  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.  A is not modified if
*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
*
*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*          diag(SR)*A*diag(SC).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  AF      (local input or local output) COMPLEX*16 pointer
*          into the local memory to an array of local dimension
*          ( LLD_AF, LOCc(JA+N-1)).
*          If FACT = 'F', then AF is an input argument and on entry
*          contains the triangular factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T, in the same storage
*          format as A.  If EQUED .ne. 'N', then AF is the factored form
*          of the equilibrated matrix diag(SR)*A*diag(SC).
*
*          If FACT = 'N', then AF is an output argument and on exit
*          returns the triangular factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T of the original
*          matrix A.
*
*          If FACT = 'E', then AF is an output argument and on exit
*          returns the triangular factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T of the equilibrated
*          matrix A (see the description of A for the form of the
*          equilibrated matrix).
*
*  IAF     (global input) INTEGER
*          The row index in the global array AF indicating the first
*          row of sub( AF ).
*
*  JAF     (global input) INTEGER
*          The column index in the global array AF indicating the
*          first column of sub( AF ).
*
*  DESCAF  (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix AF.
*
*  EQUED   (global input/global output) CHARACTER
*          Specifies the form of equilibration that was done.
*          = 'N':  No equilibration (always true if FACT = 'N').
*          = 'Y':  Equilibration was done, i.e., A has been replaced by
*                  diag(SR) * A * diag(SC).
*          EQUED is an input variable if FACT = 'F'; otherwise, it is an
*          output variable.
*
*  SR      (local input/local output) COMPLEX*16 array,
*                                                    dimension (LLD_A)
*          The scale factors for A distributed across process rows;
*          not accessed if EQUED = 'N'.  SR is an input variable if
*          FACT = 'F'; otherwise, SR is an output variable.
*          If FACT = 'F' and EQUED = 'Y', each element of SR must be
*          positive.
*
*  SC      (local input/local output) COMPLEX*16 array,
*                                              dimension (LOC(N_A))
*          The scale factors for A distributed across
*          process columns; not accessed if EQUED = 'N'. SC is an input
*          variable if FACT = 'F'; otherwise, SC is an output variable.
*          If FACT = 'F' and EQUED = 'Y', each element of SC must be
*          positive.
*
*  B       (local input/local output) COMPLEX*16 pointer into
*          the local memory to an array of local dimension
*          ( LLD_B, LOCc(JB+NRHS-1) ).
*          On entry, the N-by-NRHS right-hand side matrix B.
*          On exit, if EQUED = 'N', B is not modified; if TRANS = 'N'
*          and EQUED = 'R' or 'B', B is overwritten by diag(R)*B; if
*          TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is overwritten
*          by diag(C)*B.
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  X       (local input/local output) COMPLEX*16 pointer into
*          the local memory to an array of local dimension
*          ( LLD_X, LOCc(JX+NRHS-1) ).
*          If INFO = 0, the N-by-NRHS solution matrix X to the original
*          system of equations.  Note that A and B are modified on exit
*          if EQUED .ne. 'N', and the solution to the equilibrated
*          system is inv(diag(SC))*X if TRANS = 'N' and EQUED = 'C' or
*          'B', or inv(diag(SR))*X if TRANS = 'T' or 'C' and EQUED = 'R'
*          or 'B'.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  RCOND   (global output) DOUBLE PRECISION
*          The estimate of the reciprocal condition number of the matrix
*          A after equilibration (if done).  If RCOND is less than the
*          machine precision (in particular, if RCOND = 0), the matrix
*          is singular to working precision.  This condition is
*          indicated by a return code of INFO > 0, and the solution and
*          error bounds are not computed.
*
*  FERR    (local output) DOUBLE PRECISION array, dimension (LOC(N_B))
*          The estimated forward error bounds for each solution vector
*          X(j) (the j-th column of the solution matrix X).
*          If XTRUE is the true solution, FERR(j) bounds the magnitude
*          of the largest entry in (X(j) - XTRUE) divided by
*          the magnitude of the largest entry in X(j).  The quality of
*          the error bound depends on the quality of the estimate of
*          norm(inv(A)) computed in the code; if the estimate of
*          norm(inv(A)) is accurate, the error bound is guaranteed.
*
*  BERR    (local output) DOUBLE PRECISION array, dimension (LOC(N_B))
*          The componentwise relative backward error of each solution
*          vector X(j) (i.e., the smallest relative change in
*          any entry of A or B that makes X(j) an exact solution).
*
*  WORK    (local workspace/local output) COMPLEX*16 array,
*                                                dimension (LWORK)
*          On exit, WORK(1) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK = MAX( PZPOCON( LWORK ), PZPORFS( LWORK ) )
*                  + LOCr( N_A ).
*          LWORK = 3*DESCA( LLD_ )
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  RWORK   (local workspace/local output) DOUBLE PRECISION array,
*                                                dimension (LRWORK)
*          On exit, RWORK(1) returns the minimal and optimal LRWORK.
*
*  LRWORK  (local or global input) INTEGER
*          The dimension of the array RWORK.
*          LRWORK is local input and must be at least
*          LRWORK = 2*LOCc(N_A).
*
*          If LRWORK = -1, then LRWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*
*  INFO    (global output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, and i is
*               <= N: if INFO = i, the leading minor of order i of A
*                     is not positive definite, so the factorization
*                     could not be completed, and the solution and error
*                     bounds could not be computed.
*               = N+1: RCOND is less than machine precision.  The
*                     factorization has been completed, but the matrix
*                     is singular to working precision, and the solution
*                     and error bounds have not been computed.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            EQUIL, LQUERY, NOFACT, RCEQU
      INTEGER            I, IACOL, IAROW, IAFROW, IBROW, IBCOL, ICOFF,
     $                   ICOFFA, ICTXT, IDUMM, IIA, IIB, IIX, INFEQU,
     $                   IROFF, IROFFA, IROFFAF, IROFFB, IROFFX, IXCOL,
     $                   IXROW, J, JJA, JJB, JJX, LDB, LDX, LRWMIN,
     $                   LWMIN, MYCOL, MYROW, NP, NPCOL, NPROW, NRHSQ,
     $                   NQ
      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 5 ), IDUM2( 5 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK2MAT,
     $                   DGAMN2D, DGAMX2D, INFOG2L,
     $                   PXERBLA, PZPOCON, PZPOEQU,
     $                   PZPORFS, PZPOTRF, PZPOTRS,
     $                   PZLACPY, PZLAQSY
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            INDXG2P, NUMROC
      DOUBLE PRECISION   PDLAMCH, PZLANHE
      EXTERNAL           PDLAMCH, INDXG2P, LSAME, NUMROC, PZLANHE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(800+CTXT_)
      ELSE
         CALL CHK1MAT( N, 3, N, 3, IA, JA, DESCA, 8, INFO )
         IF( LSAME( FACT, 'F' ) )
     $      CALL CHK1MAT( N, 3, N, 3, IAF, JAF, DESCAF, 12, INFO )
         CALL CHK1MAT( N, 3, NRHS, 4, IB, JB, DESCB, 20, INFO )
         IF( INFO.EQ.0 ) THEN
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            IAFROW = INDXG2P( IAF, DESCAF( MB_ ), MYROW,
     $                        DESCAF( RSRC_ ), NPROW )
            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $                       NPROW )
            IXROW = INDXG2P( IX, DESCX( MB_ ), MYROW, DESCX( RSRC_ ),
     $                       NPROW )
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            IROFFAF = MOD( IAF-1, DESCAF( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IROFFB = MOD( IB-1, DESCB( MB_ ) )
            IROFFX = MOD( IX-1, DESCX( MB_ ) )
            CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW,
     $                    MYCOL, IIA, JJA, IAROW, IACOL )
            NP = NUMROC( N+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
            IF( MYROW.EQ.IAROW )
     $         NP = NP-IROFFA
            NQ = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
            IF( MYCOL.EQ.IACOL )
     $         NQ = NQ-ICOFFA
            LWMIN = 3*DESCA( LLD_ )
            LRWMIN = MAX( 2*NQ, NP )
            NOFACT = LSAME( FACT, 'N' )
            EQUIL = LSAME( FACT, 'E' )
            IF( NOFACT .OR. EQUIL ) THEN
               EQUED = 'N'
               RCEQU = .FALSE.
            ELSE
               RCEQU = LSAME( EQUED, 'Y' )
               SMLNUM = PDLAMCH( ICTXT, 'Safe minimum' )
               BIGNUM = ONE / SMLNUM
            END IF
            IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND.
     $          .NOT.LSAME( FACT, 'F' ) ) THEN
               INFO = -1
            ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
     $               .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -2
            ELSE IF( IROFFA.NE.0 ) THEN
               INFO = -6
            ELSE IF( ICOFFA.NE.0 .OR. IROFFA.NE.ICOFFA ) THEN
               INFO = -7
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(800+NB_)
            ELSE IF( IAFROW.NE.IAROW ) THEN
               INFO = -10
            ELSE IF( IROFFAF.NE.0 ) THEN
               INFO = -10
            ELSE IF( ICTXT.NE.DESCAF( CTXT_ ) ) THEN
               INFO = -(1200+CTXT_)
            ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
               INFO = -13
            ELSE
               IF( RCEQU ) THEN
*
                  SMIN = BIGNUM
                  SMAX = ZERO
                  DO 10 J = IIA, IIA + NP - 1
                     SMIN = MIN( SMIN, SR( J ) )
                     SMAX = MAX( SMAX, SR( J ) )
   10             CONTINUE
                  CALL DGAMN2D( ICTXT, 'Columnwise', ' ', 1, 1, SMIN,
     $                          1, IDUMM, IDUMM, -1, -1, MYCOL )
                  CALL DGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, SMAX,
     $                          1, IDUMM, IDUMM, -1, -1, MYCOL )
                  IF( SMIN.LE.ZERO ) THEN
                     INFO = -14
                  ELSE IF( N.GT.0 ) THEN
                     SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                  ELSE
                     SCOND = ONE
                  END IF
               END IF
            END IF
         END IF
*
         WORK( 1 ) = DBLE( LWMIN )
         RWORK( 1 ) = DBLE( LRWMIN )
         LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
         IF( INFO.EQ.0 ) THEN
            IF( IBROW.NE.IAROW ) THEN
               INFO = -18
            ELSE IF( IXROW.NE.IBROW ) THEN
               INFO = -22
            ELSE IF( DESCB( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(2000+NB_)
            ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
               INFO = -(2000+CTXT_)
            ELSE IF( ICTXT.NE.DESCX( CTXT_ ) ) THEN
               INFO = -(2400+CTXT_)
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -28
            ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -30
            END IF
            IDUM1( 1 ) = ICHAR( FACT )
            IDUM2( 1 ) = 1
            IDUM1( 2 ) = ICHAR( UPLO )
            IDUM2( 2 ) = 2
            IF( LSAME( FACT, 'F' ) ) THEN
               IDUM1( 3 ) = ICHAR( EQUED )
               IDUM2( 3 ) = 13
               IF( LWORK.EQ.-1 ) THEN
                  IDUM1( 4 ) = -1
               ELSE
                  IDUM1( 4 ) = 1
               END IF
               IDUM2( 4 ) = 28
               IF( LRWORK.EQ.-1 ) THEN
                  IDUM1( 5 ) = -1
               ELSE
                  IDUM1( 5 ) = 1
               END IF
               IDUM2( 5 ) = 30
               CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 8, N, 3, NRHS,
     $                        4, IB, JB, DESCB, 19, 5, IDUM1, IDUM2,
     $                        INFO )
            ELSE
               IF( LWORK.EQ.-1 ) THEN
                  IDUM1( 3 ) = -1
               ELSE
                  IDUM1( 3 ) = 1
               END IF
               IDUM2( 3 ) = 28
               IF( LRWORK.EQ.-1 ) THEN
                  IDUM1( 4 ) = -1
               ELSE
                  IDUM1( 4 ) = 1
               END IF
               IDUM2( 4 ) = 30
               CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 8, N, 3, NRHS,
     $                        4, IB, JB, DESCB, 19, 4, IDUM1, IDUM2,
     $                        INFO )
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PZPOSVX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL PZPOEQU( N, A, IA, JA, DESCA, SR, SC, SCOND, AMAX,
     $                 INFEQU )
*
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL PZLAQSY( UPLO, N, A, IA, JA, DESCA, SR, SC, SCOND,
     $                    AMAX, EQUED )
            RCEQU = LSAME( EQUED, 'Y' )
         END IF
      END IF
*
*     Scale the right-hand side.
*
      CALL INFOG2L( IB, JB, DESCB, NPROW, NPCOL, MYROW, MYCOL, IIB,
     $              JJB, IBROW, IBCOL )
      LDB =  DESCB( LLD_ )
      IROFF = MOD( IB-1, DESCB( MB_ ) )
      ICOFF = MOD( JB-1, DESCB( NB_ ) )
      NP = NUMROC( N+IROFF, DESCB( MB_ ), MYROW, IBROW, NPROW )
      NRHSQ = NUMROC( NRHS+ICOFF, DESCB( NB_ ), MYCOL, IBCOL, NPCOL )
      IF( MYROW.EQ.IBROW ) NP = NP-IROFF
      IF( MYCOL.EQ.IBCOL ) NRHSQ = NRHSQ-ICOFF
*
      IF( RCEQU ) THEN
         DO 30 J = JJB, JJB+NRHSQ-1
            DO 20 I = IIB, IIB+NP-1
               B( I + ( J-1 )*LDB ) = SR( I )*B( I + ( J-1 )*LDB )
   20       CONTINUE
   30    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the Cholesky factorization A = U'*U or A = L*L'.
*
         CALL PZLACPY( 'Full', N, N, A, IA, JA, DESCA, AF, IAF, JAF,
     $                 DESCAF )
         CALL PZPOTRF( UPLO, N, AF, IAF, JAF, DESCAF, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.NE.0 ) THEN
            IF( INFO.GT.0 )
     $         RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      ANORM = PZLANHE( '1', UPLO, N, A, IA, JA, DESCA, RWORK )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL PZPOCON( UPLO, N, AF, IAF, JAF, DESCAF, ANORM, RCOND, WORK,
     $              LWORK, RWORK, LRWORK, INFO )
*
*     Return if the matrix is singular to working precision.
*
      IF( RCOND.LT.PDLAMCH( ICTXT, 'Epsilon' ) ) THEN
         INFO = IA + N
         RETURN
      END IF
*
*     Compute the solution matrix X.
*
      CALL PZLACPY( 'Full', N, NRHS, B, IB, JB, DESCB, X, IX, JX,
     $              DESCX )
      CALL PZPOTRS( UPLO, N, NRHS, AF, IAF, JAF, DESCAF, X, IX, JX,
     $              DESCX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL PZPORFS( UPLO, N, NRHS, A, IA, JA, DESCA, AF, IAF, JAF,
     $              DESCAF, B, IB, JB, DESCB, X, IX, JX, DESCX, FERR,
     $              BERR, WORK, LWORK, RWORK, LRWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX,
     $              JJX, IXROW, IXCOL )
      LDX = DESCX( LLD_ )
      IROFF = MOD( IX-1, DESCX( MB_ ) )
      ICOFF = MOD( JX-1, DESCX( NB_ ) )
      NP = NUMROC( N+IROFF, DESCX( MB_ ), MYROW, IXROW, NPROW )
      NRHSQ = NUMROC( NRHS+ICOFF, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
      IF( MYROW.EQ.IBROW ) NP = NP-IROFF
      IF( MYCOL.EQ.IBCOL ) NRHSQ = NRHSQ-ICOFF
*
      IF( RCEQU ) THEN
         DO 50 J = JJX, JJX+NRHSQ-1
            DO 40 I = IIX, IIX+NP-1
               X( I + ( J-1 )*LDX ) = SR( I )*X( I + ( J-1 )*LDX )
   40       CONTINUE
   50    CONTINUE
         DO 60 J = JJX, JJX+NRHSQ-1
            FERR( J ) = FERR( J ) / SCOND
   60    CONTINUE
      END IF
*
      WORK( 1 ) = DBLE( LWMIN )
      RWORK( 1 ) = DBLE( LRWMIN )
      RETURN
*
*     End of PZPOSVX
*
      END