File: pzstein.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (643 lines) | stat: -rw-r--r-- 24,851 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
      SUBROUTINE PZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, ORFAC, Z, IZ,
     $                    JZ, DESCZ, WORK, LWORK, IWORK, LIWORK, IFAIL,
     $                    ICLUSTR, GAP, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*     .. Scalar Arguments ..
      INTEGER            INFO, IZ, JZ, LIWORK, LWORK, M, N
      DOUBLE PRECISION   ORFAC
*     ..
*     .. Array Arguments ..
      INTEGER            DESCZ( * ), IBLOCK( * ), ICLUSTR( * ),
     $                   IFAIL( * ), ISPLIT( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), GAP( * ), W( * ), WORK( * )
      COMPLEX*16         Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PZSTEIN computes the eigenvectors of a symmetric tridiagonal matrix
*  in parallel, using inverse iteration. The eigenvectors found
*  correspond to user specified eigenvalues. PZSTEIN does not
*  orthogonalize vectors that are on different processes. The extent
*  of orthogonalization is controlled by the input parameter LWORK.
*  Eigenvectors that are to be orthogonalized are computed by the same
*  process. PZSTEIN decides on the allocation of work among the
*  processes and then calls DSTEIN2 (modified LAPACK routine) on each
*  individual process. If insufficient workspace is allocated, the
*  expected orthogonalization may not be done.
*
*  Note : If the eigenvectors obtained are not orthogonal, increase
*         LWORK and run the code again.
*
*  Notes
*  =====
*
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension r x c.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the r processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the c processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  Arguments
*  =========
*
*          P = NPROW * NPCOL is the total number of processes
*
*  N       (global input) INTEGER
*          The order of the tridiagonal matrix T.  N >= 0.
*
*  D       (global input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix T.
*
*  E       (global input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) off-diagonal elements of the tridiagonal matrix T.
*
*  M       (global input) INTEGER
*          The total number of eigenvectors to be found. 0 <= M <= N.
*
*  W       (global input/global output) DOUBLE PRECISION array, dim (M)
*          On input, the first M elements of W contain all the
*          eigenvalues for which eigenvectors are to be computed. The
*          eigenvalues should be grouped by split-off block and ordered
*          from smallest to largest within the block (The output array
*          W from PDSTEBZ with ORDER='b' is expected here). This
*          array should be replicated on all processes.
*          On output, the first M elements contain the input
*          eigenvalues in ascending order.
*
*          Note : To obtain orthogonal vectors, it is best if
*          eigenvalues are computed to highest accuracy ( this can be
*          done by setting ABSTOL to the underflow threshold =
*          DLAMCH('U') --- ABSTOL is an input parameter
*          to PDSTEBZ )
*
*  IBLOCK  (global input) INTEGER array, dimension (N)
*          The submatrix indices associated with the corresponding
*          eigenvalues in W -- 1 for eigenvalues belonging to the
*          first submatrix from the top, 2 for those belonging to
*          the second submatrix, etc. (The output array IBLOCK
*          from PDSTEBZ is expected here).
*
*  ISPLIT  (global input) INTEGER array, dimension (N)
*          The splitting points, at which T breaks up into submatrices.
*          The first submatrix consists of rows/columns 1 to ISPLIT(1),
*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
*          etc., and the NSPLIT-th consists of rows/columns
*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N (The output array
*          ISPLIT from PDSTEBZ is expected here.)
*
*  ORFAC   (global input) DOUBLE PRECISION
*          ORFAC specifies which eigenvectors should be orthogonalized.
*          Eigenvectors that correspond to eigenvalues which are within
*          ORFAC*||T|| of each other are to be orthogonalized.
*          However, if the workspace is insufficient (see LWORK), this
*          tolerance may be decreased until all eigenvectors to be
*          orthogonalized can be stored in one process.
*          No orthogonalization will be done if ORFAC equals zero.
*          A default value of 10^-3 is used if ORFAC is negative.
*          ORFAC should be identical on all processes.
*
*  Z       (local output) COMPLEX*16 array,
*          dimension (DESCZ(DLEN_), N/npcol + NB)
*          Z contains the computed eigenvectors associated with the
*          specified eigenvalues. Any vector which fails to converge is
*          set to its current iterate after MAXITS iterations ( See
*          DSTEIN2 ).
*          On output, Z is distributed across the P processes in block
*          cyclic format.
*
*  IZ      (global input) INTEGER
*          Z's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JZ      (global input) INTEGER
*          Z's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  WORK    (local workspace/global output) DOUBLE PRECISION array,
*          dimension ( LWORK )
*          On output, WORK(1) gives a lower bound on the
*          workspace ( LWORK ) that guarantees the user desired
*          orthogonalization (see ORFAC).
*          Note that this may overestimate the minimum workspace needed.
*
*  LWORK   (local input) integer
*          LWORK  controls the extent of orthogonalization which can be
*          done. The number of eigenvectors for which storage is
*          allocated on each process is
*                NVEC = floor(( LWORK- max(5*N,NP00*MQ00) )/N).
*          Eigenvectors corresponding to eigenvalue clusters of size
*          NVEC - ceil(M/P) + 1 are guaranteed to be orthogonal ( the
*          orthogonality is similar to that obtained from ZSTEIN2).
*          Note : LWORK  must be no smaller than:
*               max(5*N,NP00*MQ00) + ceil(M/P)*N,
*          and should have the same input value on all processes.
*          It is the minimum value of LWORK input on different processes
*          that is significant.
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IWORK   (local workspace/global output) INTEGER array,
*          dimension ( 3*N+P+1 )
*          On return, IWORK(1) contains the amount of integer workspace
*          required.
*          On return, the IWORK(2) through IWORK(P+2) indicate
*          the eigenvectors computed by each process. Process I computes
*          eigenvectors indexed IWORK(I+2)+1 thru' IWORK(I+3).
*
*  LIWORK  (local input) INTEGER
*          Size of array IWORK.  Must be >= 3*N + P + 1
*
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IFAIL   (global output) integer array, dimension (M)
*          On normal exit, all elements of IFAIL are zero.
*          If one or more eigenvectors fail to converge after MAXITS
*          iterations (as in ZSTEIN), then INFO > 0 is returned.
*          If mod(INFO,M+1)>0, then
*          for I=1 to mod(INFO,M+1), the eigenvector
*          corresponding to the eigenvalue W(IFAIL(I)) failed to
*          converge ( W refers to the array of eigenvalues on output ).
*
*  ICLUSTR (global output) integer array, dimension (2*P)
*          This output array contains indices of eigenvectors
*          corresponding to a cluster of eigenvalues that could not be
*          orthogonalized due to insufficient workspace (see LWORK,
*          ORFAC and INFO). Eigenvectors corresponding to clusters of
*          eigenvalues indexed ICLUSTR(2*I-1) to ICLUSTR(2*I), I = 1 to
*          INFO/(M+1), could not be orthogonalized due to lack of
*          workspace. Hence the eigenvectors corresponding to these
*          clusters may not be orthogonal. ICLUSTR is a zero terminated
*          array --- ( ICLUSTR(2*K).NE.0 .AND. ICLUSTR(2*K+1).EQ.0 )
*          if and only if K is the number of clusters.
*
*  GAP     (global output) DOUBLE PRECISION array, dimension (P)
*          This output array contains the gap between eigenvalues whose
*          eigenvectors could not be orthogonalized. The INFO/M output
*          values in this array correspond to the INFO/(M+1) clusters
*          indicated by the array ICLUSTR. As a result, the dot product
*          between eigenvectors corresponding to the I^th cluster may be
*          as high as ( O(n)*macheps ) / GAP(I).
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          < 0 :  if INFO = -I, the I-th argument had an illegal value
*          > 0 :  if mod(INFO,M+1) = I, then I eigenvectors failed to
*                 converge in MAXITS iterations. Their indices are
*                 stored in the array IFAIL.
*                 if INFO/(M+1) = I, then eigenvectors corresponding to
*                 I clusters of eigenvalues could not be orthogonalized
*                 due to insufficient workspace. The indices of the
*                 clusters are stored in the array ICLUSTR.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, MOD
*     ..
*     .. External Functions ..
      INTEGER            ICEIL, NUMROC
      EXTERNAL           ICEIL, NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DGEBR2D, DGEBS2D,
     $                   DLASRT2, DSTEIN2, IGAMN2D, IGEBR2D, IGEBS2D,
     $                   PCHK1MAT, PXERBLA, PZLAEVSWP
*     ..
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, NEGONE, ODM1, FIVE, ODM3, ODM18
      PARAMETER          ( ZERO = 0.0D+0, NEGONE = -1.0D+0,
     $                   ODM1 = 1.0D-1, FIVE = 5.0D+0, ODM3 = 1.0D-3,
     $                   ODM18 = 1.0D-18 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SORTED
      INTEGER            B1, BN, BNDRY, CLSIZ, COL, I, IFIRST, IINFO,
     $                   ILAST, IM, INDRW, ITMP, J, K, LGCLSIZ, LLWORK,
     $                   LOAD, LOCINFO, MAXVEC, MQ00, MYCOL, MYROW,
     $                   NBLK, NERR, NEXT, NP00, NPCOL, NPROW, NVS,
     $                   OLNBLK, P, ROW, SELF, TILL, TOTERR
      DOUBLE PRECISION   DIFF, MINGAP, ONENRM, ORGFAC, ORTOL, TMPFAC
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 1 ), IDUM2( 1 )
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
      CALL BLACS_GRIDINFO( DESCZ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
      SELF = MYROW*NPCOL + MYCOL
*
*     Make sure that we belong to this context (before calling PCHK1MAT)
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 1200+CTXT_ )
      ELSE
*
*        Make sure that NPROW>0 and NPCOL>0 before calling NUMROC
*
         CALL CHK1MAT( N, 1, N, 1, IZ, JZ, DESCZ, 12, INFO )
         IF( INFO.EQ.0 ) THEN
*
*           Now we know that our context is good enough to
*           perform the rest of the checks
*
            NP00 = NUMROC( N, DESCZ( MB_ ), 0, 0, NPROW )
            MQ00 = NUMROC( M, DESCZ( NB_ ), 0, 0, NPCOL )
            P = NPROW*NPCOL
*
*           Compute the maximum number of vectors per process
*
            LLWORK = LWORK
            CALL IGAMN2D( DESCZ( CTXT_ ), 'A', ' ', 1, 1, LLWORK, 1, 1,
     $                    1, -1, -1, -1 )
            INDRW = MAX( 5*N, NP00*MQ00 )
            IF( N.NE.0 )
     $         MAXVEC = ( LLWORK-INDRW ) / N
            LOAD = ICEIL( M, P )
            IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
               TMPFAC = ORFAC
               CALL DGEBS2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, TMPFAC,
     $                       1 )
            ELSE
               CALL DGEBR2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, TMPFAC,
     $                       1, 0, 0 )
            END IF
*
            LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
            IF( M.LT.0 .OR. M.GT.N ) THEN
               INFO = -4
            ELSE IF( MAXVEC.LT.LOAD .AND. .NOT.LQUERY ) THEN
               INFO = -14
            ELSE IF( LIWORK.LT.3*N+P+1 .AND. .NOT.LQUERY ) THEN
               INFO = -16
            ELSE
               DO 10 I = 2, M
                  IF( IBLOCK( I ).LT.IBLOCK( I-1 ) ) THEN
                     INFO = -6
                     GO TO 20
                  END IF
                  IF( IBLOCK( I ).EQ.IBLOCK( I-1 ) .AND. W( I ).LT.
     $                W( I-1 ) ) THEN
                     INFO = -5
                     GO TO 20
                  END IF
   10          CONTINUE
   20          CONTINUE
               IF( INFO.EQ.0 ) THEN
                  IF( ABS( TMPFAC-ORFAC ).GT.FIVE*ABS( TMPFAC ) )
     $               INFO = -8
               END IF
            END IF
*
         END IF
         IDUM1( 1 ) = M
         IDUM2( 1 ) = 4
         CALL PCHK1MAT( N, 1, N, 1, IZ, JZ, DESCZ, 12, 1, IDUM1, IDUM2,
     $                  INFO )
         WORK( 1 ) = DBLE( MAX( 5*N, NP00*MQ00 )+ICEIL( M, P )*N )
         IWORK( 1 ) = 3*N + P + 1
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( DESCZ( CTXT_ ), 'PZSTEIN', -INFO )
         RETURN
      ELSE IF( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) THEN
         RETURN
      END IF
*
      DO 30 I = 1, M
         IFAIL( I ) = 0
   30 CONTINUE
      DO 40 I = 1, P + 1
         IWORK( I ) = 0
   40 CONTINUE
      DO 50 I = 1, P
         GAP( I ) = NEGONE
         ICLUSTR( 2*I-1 ) = 0
         ICLUSTR( 2*I ) = 0
   50 CONTINUE
*
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
      IF( ORFAC.GE.ZERO ) THEN
         TMPFAC = ORFAC
      ELSE
         TMPFAC = ODM3
      END IF
      ORGFAC = TMPFAC
*
*     Allocate the work among the processes
*
      ILAST = M / LOAD
      IF( MOD( M, LOAD ).EQ.0 )
     $   ILAST = ILAST - 1
      OLNBLK = -1
      NVS = 0
      NEXT = 1
      IM = 0
      ONENRM = ZERO
      DO 100 I = 0, ILAST - 1
         NEXT = NEXT + LOAD
         J = NEXT - 1
         IF( J.GT.NVS ) THEN
            NBLK = IBLOCK( NEXT )
            IF( NBLK.EQ.IBLOCK( NEXT-1 ) .AND. NBLK.NE.OLNBLK ) THEN
*
*              Compute orthogonalization criterion
*
               IF( NBLK.EQ.1 ) THEN
                  B1 = 1
               ELSE
                  B1 = ISPLIT( NBLK-1 ) + 1
               END IF
               BN = ISPLIT( NBLK )
*
               ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
               ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
               DO 60 J = B1 + 1, BN - 1
                  ONENRM = MAX( ONENRM, ABS( D( J ) )+ABS( E( J-1 ) )+
     $                     ABS( E( J ) ) )
   60          CONTINUE
               OLNBLK = NBLK
            END IF
            TILL = NVS + MAXVEC
   70       CONTINUE
            J = NEXT - 1
            IF( TMPFAC.GT.ODM18 ) THEN
               ORTOL = TMPFAC*ONENRM
               DO 80 J = NEXT - 1, MIN( TILL, M-1 )
                  IF( IBLOCK( J+1 ).NE.IBLOCK( J ) .OR. W( J+1 )-
     $                W( J ).GE.ORTOL ) THEN
                     GO TO 90
                  END IF
   80          CONTINUE
               IF( J.EQ.M .AND. TILL.GE.M )
     $            GO TO 90
               TMPFAC = TMPFAC*ODM1
               GO TO 70
            END IF
   90       CONTINUE
            J = MIN( J, TILL )
         END IF
         IF( SELF.EQ.I )
     $      IM = MAX( 0, J-NVS )
*
         IWORK( I+1 ) = NVS
         NVS = MAX( J, NVS )
  100 CONTINUE
      IF( SELF.EQ.ILAST )
     $   IM = M - NVS
      IWORK( ILAST+1 ) = NVS
      DO 110 I = ILAST + 2, P + 1
         IWORK( I ) = M
  110 CONTINUE
*
      CLSIZ = 1
      LGCLSIZ = 1
      ILAST = 0
      NBLK = 0
      BNDRY = 2
      K = 1
      DO 140 I = 1, M
         IF( IBLOCK( I ).NE.NBLK ) THEN
            NBLK = IBLOCK( I )
            IF( NBLK.EQ.1 ) THEN
               B1 = 1
            ELSE
               B1 = ISPLIT( NBLK-1 ) + 1
            END IF
            BN = ISPLIT( NBLK )
*
            ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
            ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
            DO 120 J = B1 + 1, BN - 1
               ONENRM = MAX( ONENRM, ABS( D( J ) )+ABS( E( J-1 ) )+
     $                  ABS( E( J ) ) )
  120       CONTINUE
*
         END IF
         IF( I.GT.1 ) THEN
            DIFF = W( I ) - W( I-1 )
            IF( IBLOCK( I ).NE.IBLOCK( I-1 ) .OR. I.EQ.M .OR. DIFF.GT.
     $          ORGFAC*ONENRM ) THEN
               IFIRST = ILAST
               IF( I.EQ.M ) THEN
                  IF( IBLOCK( M ).NE.IBLOCK( M-1 ) .OR. DIFF.GT.ORGFAC*
     $                ONENRM ) THEN
                     ILAST = M - 1
                  ELSE
                     ILAST = M
                  END IF
               ELSE
                  ILAST = I - 1
               END IF
               CLSIZ = ILAST - IFIRST
               IF( CLSIZ.GT.1 ) THEN
                  IF( LGCLSIZ.LT.CLSIZ )
     $               LGCLSIZ = CLSIZ
                  MINGAP = ONENRM
  130             CONTINUE
                  IF( BNDRY.GT.P+1 )
     $               GO TO 150
                  IF( IWORK( BNDRY ).GT.IFIRST .AND. IWORK( BNDRY ).LT.
     $                ILAST ) THEN
                     MINGAP = MIN( W( IWORK( BNDRY )+1 )-
     $                        W( IWORK( BNDRY ) ), MINGAP )
                  ELSE IF( IWORK( BNDRY ).GE.ILAST ) THEN
                     IF( MINGAP.LT.ONENRM ) THEN
                        ICLUSTR( 2*K-1 ) = IFIRST + 1
                        ICLUSTR( 2*K ) = ILAST
                        GAP( K ) = MINGAP / ONENRM
                        K = K + 1
                     END IF
                     GO TO 140
                  END IF
                  BNDRY = BNDRY + 1
                  GO TO 130
               END IF
            END IF
         END IF
  140 CONTINUE
  150 CONTINUE
      INFO = ( K-1 )*( M+1 )
*
*     Call DSTEIN2 to find the eigenvectors
*
      CALL DSTEIN2( N, D, E, IM, W( IWORK( SELF+1 )+1 ),
     $              IBLOCK( IWORK( SELF+1 )+1 ), ISPLIT, ORGFAC,
     $              WORK( INDRW+1 ), N, WORK, IWORK( P+2 ),
     $              IFAIL( IWORK( SELF+1 )+1 ), LOCINFO )
*
*     Redistribute the eigenvector matrix to conform with the block
*     cyclic distribution of the input matrix
*
*
      DO 160 I = 1, M
         IWORK( P+1+I ) = I
  160 CONTINUE
*
      CALL DLASRT2( 'I', M, W, IWORK( P+2 ), IINFO )
*
      DO 170 I = 1, M
         IWORK( M+P+1+IWORK( P+1+I ) ) = I
  170 CONTINUE
*
*
      DO 180 I = 1, LOCINFO
         ITMP = IWORK( SELF+1 ) + I
         IFAIL( ITMP ) = IFAIL( ITMP ) + ITMP - I
         IFAIL( ITMP ) = IWORK( M+P+1+IFAIL( ITMP ) )
  180 CONTINUE
*
      DO 190 I = 1, K - 1
         ICLUSTR( 2*I-1 ) = IWORK( M+P+1+ICLUSTR( 2*I-1 ) )
         ICLUSTR( 2*I ) = IWORK( M+P+1+ICLUSTR( 2*I ) )
  190 CONTINUE
*
*
* Still need to apply the above permutation to IFAIL
*
*
      TOTERR = 0
      DO 210 I = 1, P
         IF( SELF.EQ.I-1 ) THEN
            CALL IGEBS2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, LOCINFO, 1 )
            IF( LOCINFO.NE.0 ) THEN
               CALL IGEBS2D( DESCZ( CTXT_ ), 'ALL', ' ', LOCINFO, 1,
     $                       IFAIL( IWORK( I )+1 ), LOCINFO )
               DO 200 J = 1, LOCINFO
                  IFAIL( TOTERR+J ) = IFAIL( IWORK( I )+J )
  200          CONTINUE
               TOTERR = TOTERR + LOCINFO
            END IF
         ELSE
*
            ROW = ( I-1 ) / NPCOL
            COL = MOD( I-1, NPCOL )
*
            CALL IGEBR2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, NERR, 1,
     $                    ROW, COL )
            IF( NERR.NE.0 ) THEN
               CALL IGEBR2D( DESCZ( CTXT_ ), 'ALL', ' ', NERR, 1,
     $                       IFAIL( TOTERR+1 ), NERR, ROW, COL )
               TOTERR = TOTERR + NERR
            END IF
         END IF
  210 CONTINUE
      INFO = INFO + TOTERR
*
*
      CALL PZLAEVSWP( N, WORK( INDRW+1 ), N, Z, IZ, JZ, DESCZ, IWORK,
     $                IWORK( M+P+2 ), WORK, INDRW )
*
      DO 220 I = 2, P
         IWORK( I ) = IWORK( M+P+1+IWORK( I ) )
  220 CONTINUE
*
*
*     Sort the IWORK array
*
*
  230 CONTINUE
      SORTED = .TRUE.
      DO 240 I = 2, P - 1
         IF( IWORK( I ).GT.IWORK( I+1 ) ) THEN
            ITMP = IWORK( I+1 )
            IWORK( I+1 ) = IWORK( I )
            IWORK( I ) = ITMP
            SORTED = .FALSE.
         END IF
  240 CONTINUE
      IF( .NOT.SORTED )
     $   GO TO 230
*
      DO 250 I = P + 1, 1, -1
         IWORK( I+1 ) = IWORK( I )
  250 CONTINUE
*
      WORK( 1 ) = ( LGCLSIZ+LOAD-1 )*N + INDRW
      IWORK( 1 ) = 3*N + P + 1
*
*     End of PZSTEIN
*
      END