File: sdttrsv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (177 lines) | stat: -rw-r--r-- 4,981 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
      SUBROUTINE SDTTRSV( UPLO, TRANS, N, NRHS, DL, D, DU,
     $                   B, LDB, INFO )
*
*  -- ScaLAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
*     Written by Andrew J. Cleary, University of Tennessee.
*     August, 1996.
*     Modified from SGTTRS:
*  -- LAPACK routine (preliminary version) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO, TRANS
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
*     ..
*
*  Purpose
*  =======
*
*  SDTTRSV solves one of the systems of equations
*     L * X = B,  L**T * X = B,  or  L**H * X = B,
*     U * X = B,  U**T * X = B,  or  U**H * X = B,
*  with factors of the tridiagonal matrix A from the LU factorization
*  computed by SDTTRF.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether to solve with L or U.
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the system of equations:
*          = 'N':  A * X = B     (No transpose)
*          = 'T':  A**T * X = B  (Transpose)
*          = 'C':  A**H * X = B  (Conjugate transpose)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  DL      (input) COMPLEX array, dimension (N-1)
*          The (n-1) multipliers that define the matrix L from the
*          LU factorization of A.
*
*  D       (input) COMPLEX array, dimension (N)
*          The n diagonal elements of the upper triangular matrix U from
*          the LU factorization of A.
*
*  DU      (input) COMPLEX array, dimension (N-1)
*          The (n-1) elements of the first superdiagonal of U.
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, B is overwritten by the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LOWER, NOTRAN
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      LOWER = LSAME( UPLO, 'L' )
      IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SDTTRSV', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( NOTRAN ) THEN
*
      IF( LOWER ) THEN
*        Solve L*X = B, overwriting B with X.
*
         DO 35 J = 1, NRHS
*
*           Solve L*x = b.
*
            DO 10 I = 1, N - 1
                  B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
   10       CONTINUE
   35    CONTINUE
*
      ELSE
*        Solve U*x = b.
*
         DO 30 J = 1, NRHS
            B( N, J ) = B( N, J ) / D( N )
            IF( N.GT.1 )
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                       D( N-1 )
            DO 20 I = N - 2, 1, -1
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J ) ) / D( I )
   20       CONTINUE
   30    CONTINUE
*
      ENDIF
*
      ELSE
*
         IF( .NOT. LOWER ) THEN
*        Solve U**T * X = B, overwriting B with X.
*
         DO 65 J = 1, NRHS
*
*           Solve U**T * x = b.
*
            B( 1, J ) = B( 1, J ) / D( 1 )
            IF( N.GT.1 )
     $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
            DO 40 I = 3, N
               B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J ) ) / D( I )
   40       CONTINUE
   65    CONTINUE
*
         ELSE
*
*        Solve L**T * X = B, overwriting B with X.
         DO 60 J = 1, NRHS
*
*           Solve L**T * x = b.
*
            DO 50 I = N - 1, 1, -1
                  B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
   50       CONTINUE
   60    CONTINUE
         ENDIF
      END IF
*
*     End of SDTTRSV
*
      END