1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
SUBROUTINE SLARRF2( N, D, L, LD, CLSTRT, CLEND,
$ CLMID1, CLMID2, W, WGAP, WERR, TRYMID,
$ SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA,
$ DPLUS, LPLUS, WORK, INFO )
*
* -- ScaLAPACK computational routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* July 4, 2010
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER CLSTRT, CLEND, CLMID1, CLMID2, INFO, N
REAL CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM
LOGICAL TRYMID
* ..
* .. Array Arguments ..
REAL D( * ), DPLUS( * ), L( * ), LD( * ),
$ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* Given the initial representation L D L^T and its cluster of close
* eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
* W( CLEND ), SLARRF2 finds a new relatively robust representation
* L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
* eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
*
* This is an enhanced version of SLARRF that also tries shifts in
* the middle of the cluster, should there be a large gap, in order to
* break large clusters into at least two pieces.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix (subblock, if the matrix splitted).
*
* D (input) REAL array, dimension (N)
* The N diagonal elements of the diagonal matrix D.
*
* L (input) REAL array, dimension (N-1)
* The (N-1) subdiagonal elements of the unit bidiagonal
* matrix L.
*
* LD (input) REAL array, dimension (N-1)
* The (N-1) elements L(i)*D(i).
*
* CLSTRT (input) INTEGER
* The index of the first eigenvalue in the cluster.
*
* CLEND (input) INTEGER
* The index of the last eigenvalue in the cluster.
*
* CLMID1,2(input) INTEGER
* The index of a middle eigenvalue pair with large gap
*
* W (input) REAL array, dimension >= (CLEND-CLSTRT+1)
* The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
* W( CLSTRT ) through W( CLEND ) form the cluster of relatively
* close eigenalues.
*
* WGAP (input/output) REAL array, dimension >= (CLEND-CLSTRT+1)
* The separation from the right neighbor eigenvalue in W.
*
* WERR (input) REAL array, dimension >= (CLEND-CLSTRT+1)
* WERR contain the semiwidth of the uncertainty
* interval of the corresponding eigenvalue APPROXIMATION in W
*
* SPDIAM (input) estimate of the spectral diameter obtained from the
* Gerschgorin intervals
*
* CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
* Set by the calling routine to protect against shifts too close
* to eigenvalues outside the cluster.
*
* PIVMIN (input) DOUBLE PRECISION
* The minimum pivot allowed in the sturm sequence.
*
* SIGMA (output) REAL
* The shift used to form L(+) D(+) L(+)^T.
*
* DPLUS (output) REAL array, dimension (N)
* The N diagonal elements of the diagonal matrix D(+).
*
* LPLUS (output) REAL array, dimension (N-1)
* The first (N-1) elements of LPLUS contain the subdiagonal
* elements of the unit bidiagonal matrix L(+).
*
* WORK (workspace) REAL array, dimension (2*N)
* Workspace.
*
* Further Details
* ===============
*
* Based on contributions by
* Beresford Parlett, University of California, Berkeley, USA
* Jim Demmel, University of California, Berkeley, USA
* Inderjit Dhillon, University of Texas, Austin, USA
* Osni Marques, LBNL/NERSC, USA
* Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
REAL FOUR, MAXGROWTH1, MAXGROWTH2, ONE, QUART, TWO
PARAMETER ( ONE = 1.0E0, TWO = 2.0E0,
$ FOUR = 4.0E0, QUART = 0.25E0,
$ MAXGROWTH1 = 8.E0,
$ MAXGROWTH2 = 8.E0 )
* ..
* .. Local Scalars ..
LOGICAL DORRR1, NOFAIL, SAWNAN1, SAWNAN2, TRYRRR1
INTEGER BI,I,J,KTRY,KTRYMAX,SLEFT,SRIGHT,SMID,SHIFT
PARAMETER ( KTRYMAX = 1, SMID =0, SLEFT = 1, SRIGHT = 2 )
* DSTQDS loops will be blocked to detect NaNs earlier if they occur
INTEGER BLKLEN
PARAMETER ( BLKLEN = 512 )
REAL AVGAP, BESTSHIFT, CLWDTH, EPS, FACT, FAIL,
$ FAIL2, GROWTHBOUND, LDELTA, LDMAX, LEASTGROWTH,
$ LSIGMA, MAX1, MAX2, MINGAP, MSIGMA1, MSIGMA2,
$ OLDP, PROD, RDELTA, RDMAX, RRR1, RRR2, RSIGMA,
$ S, TMP, ZNM2
* ..
* .. External Functions ..
LOGICAL SISNAN
REAL SLAMCH
EXTERNAL SISNAN, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL SCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
INFO = 0
FACT = REAL(2**KTRYMAX)
EPS = SLAMCH( 'Precision' )
SHIFT = 0
* Decide whether the code should accept the best among all
* representations despite large element growth or signal INFO=1
NOFAIL = .TRUE.
*
* Compute the average gap length of the cluster
CLWDTH = ABS(W(CLEND)-W(CLSTRT)) + WERR(CLEND) + WERR(CLSTRT)
AVGAP = CLWDTH / REAL(CLEND-CLSTRT)
MINGAP = MIN(CLGAPL, CLGAPR)
* Initial values for shifts to both ends of cluster
LSIGMA = MIN(W( CLSTRT ),W( CLEND )) - WERR( CLSTRT )
RSIGMA = MAX(W( CLSTRT ),W( CLEND )) + WERR( CLEND )
MSIGMA1 = W( CLMID1 ) + WERR( CLMID1 )
MSIGMA2 = W( CLMID2 ) - WERR( CLMID2 )
* Use a small fudge to make sure that we really shift to the outside
LSIGMA = LSIGMA - ABS(LSIGMA)* TWO * EPS
RSIGMA = RSIGMA + ABS(RSIGMA)* TWO * EPS
* Compute upper bounds for how much to back off the initial shifts
LDMAX = QUART * MINGAP + TWO * PIVMIN
RDMAX = QUART * MINGAP + TWO * PIVMIN
LDELTA = MAX(AVGAP,WGAP( CLSTRT ))/FACT
RDELTA = MAX(AVGAP,WGAP( CLEND-1 ))/FACT
*
* Initialize the record of the best representation found
*
S = SLAMCH( 'S' )
LEASTGROWTH = ONE / S
FAIL = REAL(N-1)*MINGAP/(SPDIAM*EPS)
FAIL2 = REAL(N-1)*MINGAP/(SPDIAM*SQRT(EPS))
GROWTHBOUND = MAXGROWTH1*SPDIAM
*
* Set default best shift
*
BESTSHIFT = LSIGMA
IF(.NOT.TRYMID) GOTO 4
*
* Try shifts in the middle
*
SHIFT = SMID
DO 3 J=1,2
SAWNAN1 = .FALSE.
IF(J.EQ.1) THEN
* Try left middle point
SIGMA = MSIGMA1
ELSE
* Try left middle point
SIGMA = MSIGMA2
ENDIF
S = -SIGMA
DPLUS( 1 ) = D( 1 ) + S
MAX1 = ABS( DPLUS( 1 ) )
DO 2 BI = 1, N-1, BLKLEN
DO 1 I = BI, MIN( BI+BLKLEN-1, N-1)
LPLUS( I ) = LD( I ) / DPLUS( I )
S = S*LPLUS( I )*L( I ) - SIGMA
DPLUS( I+1 ) = D( I+1 ) + S
MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) )
1 CONTINUE
SAWNAN1=SAWNAN1 .OR. SISNAN(MAX1)
IF (SAWNAN1) GOTO 3
2 CONTINUE
IF( .NOT.SAWNAN1 ) THEN
IF( MAX1.LE.GROWTHBOUND ) THEN
GOTO 100
ELSE IF( MAX1.LE.LEASTGROWTH ) THEN
LEASTGROWTH = MAX1
BESTSHIFT = SIGMA
ENDIF
ENDIF
3 CONTINUE
4 CONTINUE
*
* Shifts in the middle not tried or not succeeded
* Find best shift on the outside of the cluster
*
* while (KTRY <= KTRYMAX)
KTRY = 0
*
*
*
5 CONTINUE
* Compute element growth when shifting to both ends of the cluster
* accept shift if there is no element growth at one of the two ends
* Left end
SAWNAN1 = .FALSE.
S = -LSIGMA
DPLUS( 1 ) = D( 1 ) + S
MAX1 = ABS( DPLUS( 1 ) )
DO 12 BI = 1, N-1, BLKLEN
DO 11 I = BI, MIN( BI+BLKLEN-1, N-1)
LPLUS( I ) = LD( I ) / DPLUS( I )
S = S*LPLUS( I )*L( I ) - LSIGMA
DPLUS( I+1 ) = D( I+1 ) + S
MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) )
11 CONTINUE
SAWNAN1=SAWNAN1 .OR. SISNAN(MAX1)
IF (SAWNAN1) GOTO 13
12 CONTINUE
IF( .NOT.SAWNAN1 ) THEN
IF( MAX1.LE.GROWTHBOUND ) THEN
SIGMA = LSIGMA
SHIFT = SLEFT
GOTO 100
ELSE IF( MAX1.LE.LEASTGROWTH ) THEN
LEASTGROWTH = MAX1
BESTSHIFT = LSIGMA
ENDIF
ENDIF
13 CONTINUE
* Right end
SAWNAN2 = .FALSE.
S = -RSIGMA
WORK( 1 ) = D( 1 ) + S
MAX2 = ABS( WORK( 1 ) )
DO 22 BI = 1, N-1, BLKLEN
DO 21 I = BI, MIN( BI+BLKLEN-1, N-1)
WORK( N+I ) = LD( I ) / WORK( I )
S = S*WORK( N+I )*L( I ) - RSIGMA
WORK( I+1 ) = D( I+1 ) + S
MAX2 = MAX( MAX2,ABS(WORK(I+1)) )
21 CONTINUE
SAWNAN2=SAWNAN2 .OR. SISNAN(MAX2)
IF (SAWNAN2) GOTO 23
22 CONTINUE
IF( .NOT.SAWNAN2 ) THEN
IF( MAX2.LE.GROWTHBOUND ) THEN
SIGMA = RSIGMA
SHIFT = SRIGHT
GOTO 100
ELSE IF( MAX2.LE.LEASTGROWTH ) THEN
LEASTGROWTH = MAX2
BESTSHIFT = RSIGMA
ENDIF
ENDIF
23 CONTINUE
* If we are at this point, both shifts led to too much element growth
50 CONTINUE
IF (KTRY.LT.KTRYMAX) THEN
* If we are here, both shifts failed also the RRR test.
* Back off to the outside
LSIGMA = MAX( LSIGMA - LDELTA,
$ LSIGMA - LDMAX)
RSIGMA = MIN( RSIGMA + RDELTA,
$ RSIGMA + RDMAX )
LDELTA = TWO * LDELTA
RDELTA = TWO * RDELTA
* Ensure that we do not back off too much of the initial shifts
LDELTA = MIN(LDMAX,LDELTA)
RDELTA = MIN(RDMAX,RDELTA)
KTRY = KTRY + 1
GOTO 5
ELSE
* None of the representations investigated satisfied our
* criteria. Take the best one we found.
IF((LEASTGROWTH.LT.FAIL).OR.NOFAIL) THEN
LSIGMA = BESTSHIFT
SAWNAN1 = .FALSE.
S = -LSIGMA
DPLUS( 1 ) = D( 1 ) + S
DO 6 I = 1, N - 1
LPLUS( I ) = LD( I ) / DPLUS( I )
S = S*LPLUS( I )*L( I ) - LSIGMA
DPLUS( I+1 ) = D( I+1 ) + S
IF(ABS(DPLUS(I+1)).LT.PIVMIN) THEN
DPLUS(I+1) = -PIVMIN
ENDIF
6 CONTINUE
SIGMA = LSIGMA
SHIFT = SLEFT
GOTO 100
ELSE
INFO = 1
RETURN
ENDIF
END IF
100 CONTINUE
IF (SHIFT.EQ.SLEFT .OR. SHIFT.EQ.SMID ) THEN
ELSEIF (SHIFT.EQ.SRIGHT) THEN
* store new L and D back into DPLUS, LPLUS
CALL SCOPY( N, WORK, 1, DPLUS, 1 )
CALL SCOPY( N-1, WORK(N+1), 1, LPLUS, 1 )
ENDIF
RETURN
*
* End of SLARRF2
*
END
|