File: spttrsv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (135 lines) | stat: -rw-r--r-- 3,659 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
      SUBROUTINE SPTTRSV( TRANS, N, NRHS, D, E, B, LDB,
     $                        INFO )
*
*  -- ScaLAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
*     Written by Andrew J. Cleary, University of Tennessee.
*     November, 1996.
*     Modified from SPTTRS:
*  -- LAPACK routine (preliminary version) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      REAL               B( LDB, * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  SPTTRSV solves one of the triangular systems
*     L**T* X = B, or  L * X = B,
*  where L is the Cholesky factor of a Hermitian positive
*  definite tridiagonal matrix A such that
*  A = L*D*L**H (computed by SPTTRF).
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the system of equations:
*          = 'N':  L * X = B     (No transpose)
*          = 'T':  L**T * X = B  (Transpose)
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from the
*          factorization computed by SPTTRF.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) off-diagonal elements of the unit bidiagonal
*          factor U or L from the factorization computed by SPTTRF
*          (see UPLO).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPTTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( NOTRAN ) THEN
*
         DO 60 J = 1, NRHS
*
*           Solve L * x = b.
*
            DO 40 I = 2, N
               B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
   40       CONTINUE
   60    CONTINUE
*
      ELSE
*
         DO 65 J = 1, NRHS
*
*           Solve L**H * x = b.
*
            DO 50 I = N - 1, 1, -1
               B( I, J ) = B( I, J ) -
     $                     B( I+1, J )*( E( I ) )
   50       CONTINUE
   65    CONTINUE
      ENDIF
*
      RETURN
*
*     End of SPTTRS
*
      END