1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
SUBROUTINE SPTTRSV( TRANS, N, NRHS, D, E, B, LDB,
$ INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
* Written by Andrew J. Cleary, University of Tennessee.
* November, 1996.
* Modified from SPTTRS:
* -- LAPACK routine (preliminary version) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL D( * )
REAL B( LDB, * ), E( * )
* ..
*
* Purpose
* =======
*
* SPTTRSV solves one of the triangular systems
* L**T* X = B, or L * X = B,
* where L is the Cholesky factor of a Hermitian positive
* definite tridiagonal matrix A such that
* A = L*D*L**H (computed by SPTTRF).
*
* Arguments
* =========
*
* TRANS (input) CHARACTER
* Specifies the form of the system of equations:
* = 'N': L * X = B (No transpose)
* = 'T': L**T * X = B (Transpose)
*
* N (input) INTEGER
* The order of the tridiagonal matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D from the
* factorization computed by SPTTRF.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) off-diagonal elements of the unit bidiagonal
* factor U or L from the factorization computed by SPTTRF
* (see UPLO).
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL NOTRAN
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SPTTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( NOTRAN ) THEN
*
DO 60 J = 1, NRHS
*
* Solve L * x = b.
*
DO 40 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
40 CONTINUE
60 CONTINUE
*
ELSE
*
DO 65 J = 1, NRHS
*
* Solve L**H * x = b.
*
DO 50 I = N - 1, 1, -1
B( I, J ) = B( I, J ) -
$ B( I+1, J )*( E( I ) )
50 CONTINUE
65 CONTINUE
ENDIF
*
RETURN
*
* End of SPTTRS
*
END
|