1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
SUBROUTINE SSTEGR2( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
$ M, W, Z, LDZ, NZC, ISUPPZ, WORK, LWORK, IWORK,
$ LIWORK, DOL, DOU, ZOFFSET, INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* July 4, 2010
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE
INTEGER DOL, DOU, IL, INFO, IU,
$ LDZ, NZC, LIWORK, LWORK, M, N, ZOFFSET
REAL VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
REAL D( * ), E( * ), W( * ), WORK( * )
REAL Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSTEGR2 computes selected eigenvalues and, optionally, eigenvectors
* of a real symmetric tridiagonal matrix T. It is invoked in the
* ScaLAPACK MRRR driver PSSYEVR and the corresponding Hermitian
* version either when only eigenvalues are to be computed, or when only
* a single processor is used (the sequential-like case).
*
* SSTEGR2 has been adapted from LAPACK's SSTEGR. Please note the
* following crucial changes.
*
* 1. The calling sequence has two additional INTEGER parameters,
* DOL and DOU, that should satisfy M>=DOU>=DOL>=1.
* SSTEGR2 ONLY computes the eigenpairs
* corresponding to eigenvalues DOL through DOU in W. (That is,
* instead of computing the eigenpairs belonging to W(1)
* through W(M), only the eigenvectors belonging to eigenvalues
* W(DOL) through W(DOU) are computed. In this case, only the
* eigenvalues DOL:DOU are guaranteed to be fully accurate.
*
* 2. M is NOT the number of eigenvalues specified by RANGE, but is
* M = DOU - DOL + 1. This concerns the case where only eigenvalues
* are computed, but on more than one processor. Thus, in this case
* M refers to the number of eigenvalues computed on this processor.
*
* 3. The arrays W and Z might not contain all the wanted eigenpairs
* locally, instead this information is distributed over other
* processors.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the N diagonal elements of the tridiagonal matrix
* T. On exit, D is overwritten.
*
* E (input/output) REAL array, dimension (N)
* On entry, the (N-1) subdiagonal elements of the tridiagonal
* matrix T in elements 1 to N-1 of E. E(N) need not be set on
* input, but is used internally as workspace.
* On exit, E is overwritten.
*
* VL (input) REAL
* VU (input) REAL
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* M (output) INTEGER
* Globally summed over all processors, M equals
* the total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
* The local output equals M = DOU - DOL + 1.
*
* W (output) REAL array, dimension (N)
* The first M elements contain the selected eigenvalues in
* ascending order. Note that immediately after exiting this
* routine, only the eigenvalues from
* position DOL:DOU are to reliable on this processor
* because the eigenvalue computation is done in parallel.
* Other processors will hold reliable information on other
* parts of the W array. This information is communicated in
* the ScaLAPACK driver.
*
* Z (output) REAL array, dimension (LDZ, max(1,M) )
* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
* contain some of the orthonormal eigenvectors of the matrix T
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and can be computed with a workspace
* query by setting NZC = -1, see below.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', then LDZ >= max(1,N).
*
* NZC (input) INTEGER
* The number of eigenvectors to be held in the array Z.
* If RANGE = 'A', then NZC >= max(1,N).
* If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
* If RANGE = 'I', then NZC >= IU-IL+1.
* If NZC = -1, then a workspace query is assumed; the
* routine calculates the number of columns of the array Z that
* are needed to hold the eigenvectors.
* This value is returned as the first entry of the Z array, and
* no error message related to NZC is issued.
*
* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th computed eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ). This is relevant in the case when the matrix
* is split. ISUPPZ is only set if N>2.
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal
* (and minimal) LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,18*N)
* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued.
*
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK. LIWORK >= max(1,10*N)
* if the eigenvectors are desired, and LIWORK >= max(1,8*N)
* if only the eigenvalues are to be computed.
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal size of the IWORK array,
* returns this value as the first entry of the IWORK array, and
* no error message related to LIWORK is issued.
*
* DOL (input) INTEGER
* DOU (input) INTEGER
* From the eigenvalues W(1:M), only eigenvectors
* Z(:,DOL) to Z(:,DOU) are computed.
* If DOL > 1, then Z(:,DOL-1-ZOFFSET) is used and overwritten.
* If DOU < M, then Z(:,DOU+1-ZOFFSET) is used and overwritten.
*
* ZOFFSET (input) INTEGER
* Offset for storing the eigenpairs when Z is distributed
* in 1D-cyclic fashion
*
* INFO (output) INTEGER
* On exit, INFO
* = 0: successful exit
* other:if INFO = -i, the i-th argument had an illegal value
* if INFO = 10X, internal error in SLARRE2,
* if INFO = 20X, internal error in SLARRV.
* Here, the digit X = ABS( IINFO ) < 10, where IINFO is
* the nonzero error code returned by SLARRE2 or
* SLARRV, respectively.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, FOUR, MINRGP
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0,
$ FOUR = 4.0E0,
$ MINRGP = 3.0E-3 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
INTEGER I, IIL, IINDBL, IINDW, IINDWK, IINFO, IINSPL,
$ IIU, INDE2, INDERR, INDGP, INDGRS, INDWRK,
$ ITMP, ITMP2, J, JJ, LIWMIN, LWMIN, NSPLIT,
$ NZCMIN
REAL BIGNUM, EPS, PIVMIN, RMAX, RMIN, RTOL1, RTOL2,
$ SAFMIN, SCALE, SMLNUM, THRESH, TMP, TNRM, WL,
$ WU
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANST
EXTERNAL LSAME, SLAMCH, SLANST
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLAE2, SLAEV2, SLARRC, SLARRE2,
$ SLARRV, SLASRT, SSCAL, SSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
ZQUERY = ( NZC.EQ.-1 )
* SSTEGR2 needs WORK of size 6*N, IWORK of size 3*N.
* In addition, SLARRE2 needs WORK of size 6*N, IWORK of size 5*N.
* Furthermore, SLARRV needs WORK of size 12*N, IWORK of size 7*N.
IF( WANTZ ) THEN
LWMIN = 18*N
LIWMIN = 10*N
ELSE
* need less workspace if only the eigenvalues are wanted
LWMIN = 12*N
LIWMIN = 8*N
ENDIF
WL = ZERO
WU = ZERO
IIL = 0
IIU = 0
IF( VALEIG ) THEN
* We do not reference VL, VU in the cases RANGE = 'I','A'
* The interval (WL, WU] contains all the wanted eigenvalues.
* It is either given by the user or computed in SLARRE2.
WL = VL
WU = VU
ELSEIF( INDEIG ) THEN
* We do not reference IL, IU in the cases RANGE = 'V','A'
IIL = IL
IIU = IU
ENDIF
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
INFO = -7
ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
INFO = -8
ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
INFO = -9
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -13
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -17
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -19
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
*
IF( WANTZ .AND. ALLEIG ) THEN
NZCMIN = N
IIL = 1
IIU = N
ELSE IF( WANTZ .AND. VALEIG ) THEN
CALL SLARRC( 'T', N, VL, VU, D, E, SAFMIN,
$ NZCMIN, ITMP, ITMP2, INFO )
IIL = ITMP+1
IIU = ITMP2
ELSE IF( WANTZ .AND. INDEIG ) THEN
NZCMIN = IIU-IIL+1
ELSE
* WANTZ .EQ. FALSE.
NZCMIN = 0
ENDIF
IF( ZQUERY .AND. INFO.EQ.0 ) THEN
Z( 1,1 ) = NZCMIN
ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
INFO = -14
END IF
END IF
IF ( WANTZ ) THEN
IF ( DOL.LT.1 .OR. DOL.GT.NZCMIN ) THEN
INFO = -20
ENDIF
IF ( DOU.LT.1 .OR. DOU.GT.NZCMIN .OR. DOU.LT.DOL) THEN
INFO = -21
ENDIF
ENDIF
IF( INFO.NE.0 ) THEN
*
C Disable sequential error handler
C for parallel case
C CALL XERBLA( 'SSTEGR2', -INFO )
*
RETURN
ELSE IF( LQUERY .OR. ZQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 )
$ RETURN
*
IF( N.EQ.1 ) THEN
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = D( 1 )
ELSE
IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
M = 1
W( 1 ) = D( 1 )
END IF
END IF
IF( WANTZ )
$ Z( 1, 1 ) = ONE
RETURN
END IF
*
INDGRS = 1
INDERR = 2*N + 1
INDGP = 3*N + 1
INDE2 = 5*N + 1
INDWRK = 6*N + 1
*
IINSPL = 1
IINDBL = N + 1
IINDW = 2*N + 1
IINDWK = 3*N + 1
*
* Scale matrix to allowable range, if necessary.
*
SCALE = ONE
TNRM = SLANST( 'M', N, D, E )
IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
SCALE = RMIN / TNRM
ELSE IF( TNRM.GT.RMAX ) THEN
SCALE = RMAX / TNRM
END IF
IF( SCALE.NE.ONE ) THEN
CALL SSCAL( N, SCALE, D, 1 )
CALL SSCAL( N-1, SCALE, E, 1 )
TNRM = TNRM*SCALE
IF( VALEIG ) THEN
* If eigenvalues in interval have to be found,
* scale (WL, WU] accordingly
WL = WL*SCALE
WU = WU*SCALE
ENDIF
END IF
*
* Compute the desired eigenvalues of the tridiagonal after splitting
* into smaller subblocks if the corresponding off-diagonal elements
* are small
* THRESH is the splitting parameter for SLARRE2
* A negative THRESH forces the old splitting criterion based on the
* size of the off-diagonal. A positive THRESH switches to splitting
* which preserves relative accuracy.
*
IINFO = -1
* Set the splitting criterion
IF (IINFO.EQ.0) THEN
THRESH = EPS
ELSE
THRESH = -EPS
ENDIF
*
* Store the squares of the offdiagonal values of T
DO 5 J = 1, N-1
WORK( INDE2+J-1 ) = E(J)**2
5 CONTINUE
* Set the tolerance parameters for bisection
IF( .NOT.WANTZ ) THEN
* SLARRE2 computes the eigenvalues to full precision.
RTOL1 = FOUR * EPS
RTOL2 = FOUR * EPS
ELSE
* SLARRE2 computes the eigenvalues to less than full precision.
* SLARRV will refine the eigenvalue approximations, and we can
* need less accurate initial bisection in SLARRE2.
* Note: these settings do only affect the subset case and SLARRE2
RTOL1 = SQRT(EPS)
RTOL2 = MAX( SQRT(EPS)*5.0E-3, FOUR * EPS )
ENDIF
CALL SLARRE2( RANGE, N, WL, WU, IIL, IIU, D, E,
$ WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
$ IWORK( IINSPL ), M, DOL, DOU,
$ W, WORK( INDERR ),
$ WORK( INDGP ), IWORK( IINDBL ),
$ IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
$ WORK( INDWRK ), IWORK( IINDWK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 100 + ABS( IINFO )
RETURN
END IF
* Note that if RANGE .NE. 'V', SLARRE2 computes bounds on the desired
* part of the spectrum. All desired eigenvalues are contained in
* (WL,WU]
IF( WANTZ ) THEN
*
* Compute the desired eigenvectors corresponding to the computed
* eigenvalues
*
CALL SLARRV( N, WL, WU, D, E,
$ PIVMIN, IWORK( IINSPL ), M,
$ DOL, DOU, MINRGP, RTOL1, RTOL2,
$ W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
$ IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
$ ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 200 + ABS( IINFO )
RETURN
END IF
ELSE
* SLARRE2 computes eigenvalues of the (shifted) root representation
* SLARRV returns the eigenvalues of the unshifted matrix.
* However, if the eigenvectors are not desired by the user, we need
* to apply the corresponding shifts from SLARRE2 to obtain the
* eigenvalues of the original matrix.
DO 20 J = 1, M
ITMP = IWORK( IINDBL+J-1 )
W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
20 CONTINUE
END IF
*
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( SCALE.NE.ONE ) THEN
CALL SSCAL( M, ONE / SCALE, W, 1 )
END IF
*
* Correct M if needed
*
IF ( WANTZ ) THEN
IF( DOL.NE.1 .OR. DOU.NE.M ) THEN
M = DOU - DOL +1
ENDIF
ENDIF
*
* If eigenvalues are not in increasing order, then sort them,
* possibly along with eigenvectors.
*
IF( NSPLIT.GT.1 ) THEN
IF( .NOT. WANTZ ) THEN
CALL SLASRT( 'I', DOU - DOL +1, W(DOL), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
ELSE
DO 60 J = DOL, DOU - 1
I = 0
TMP = W( J )
DO 50 JJ = J + 1, M
IF( W( JJ ).LT.TMP ) THEN
I = JJ
TMP = W( JJ )
END IF
50 CONTINUE
IF( I.NE.0 ) THEN
W( I ) = W( J )
W( J ) = TMP
IF( WANTZ ) THEN
CALL SSWAP( N, Z( 1, I-ZOFFSET ),
$ 1, Z( 1, J-ZOFFSET ), 1 )
ITMP = ISUPPZ( 2*I-1 )
ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
ISUPPZ( 2*J-1 ) = ITMP
ITMP = ISUPPZ( 2*I )
ISUPPZ( 2*I ) = ISUPPZ( 2*J )
ISUPPZ( 2*J ) = ITMP
END IF
END IF
60 CONTINUE
END IF
ENDIF
*
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
RETURN
*
* End of SSTEGR2
*
END
|