1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
*
*
SUBROUTINE SSTEIN2( N, D, E, M, W, IBLOCK, ISPLIT, ORFAC, Z, LDZ,
$ WORK, IWORK, IFAIL, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER INFO, LDZ, M, N
REAL ORFAC
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
$ IWORK( * )
REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSTEIN2 computes the eigenvectors of a real symmetric tridiagonal
* matrix T corresponding to specified eigenvalues, using inverse
* iteration.
*
* The maximum number of iterations allowed for each eigenvector is
* specified by an internal parameter MAXITS (currently set to 5).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the tridiagonal matrix T.
*
* E (input) REAL array, dimension (N)
* The (n-1) subdiagonal elements of the tridiagonal matrix
* T, in elements 1 to N-1. E(N) need not be set.
*
* M (input) INTEGER
* The number of eigenvectors to be found. 0 <= M <= N.
*
* W (input) REAL array, dimension (N)
* The first M elements of W contain the eigenvalues for
* which eigenvectors are to be computed. The eigenvalues
* should be grouped by split-off block and ordered from
* smallest to largest within the block. ( The output array
* W from SSTEBZ with ORDER = 'B' is expected here. )
*
* IBLOCK (input) INTEGER array, dimension (N)
* The submatrix indices associated with the corresponding
* eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
* the first submatrix from the top, =2 if W(i) belongs to
* the second submatrix, etc. ( The output array IBLOCK
* from SSTEBZ is expected here. )
*
* ISPLIT (input) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to
* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
* through ISPLIT( 2 ), etc.
* ( The output array ISPLIT from SSTEBZ is expected here. )
*
* ORFAC (input) REAL
* ORFAC specifies which eigenvectors should be
* orthogonalized. Eigenvectors that correspond to eigenvalues
* which are within ORFAC*||T|| of each other are to be
* orthogonalized.
*
* Z (output) REAL array, dimension (LDZ, M)
* The computed eigenvectors. The eigenvector associated
* with the eigenvalue W(i) is stored in the i-th column of
* Z. Any vector which fails to converge is set to its current
* iterate after MAXITS iterations.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= max(1,N).
*
* WORK (workspace) REAL array, dimension (5*N)
*
* IWORK (workspace) INTEGER array, dimension (N)
*
* IFAIL (output) INTEGER array, dimension (M)
* On normal exit, all elements of IFAIL are zero.
* If one or more eigenvectors fail to converge after
* MAXITS iterations, then their indices are stored in
* array IFAIL.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, then i eigenvectors failed to converge
* in MAXITS iterations. Their indices are stored in
* array IFAIL.
*
* Internal Parameters
* ===================
*
* MAXITS INTEGER, default = 5
* The maximum number of iterations performed.
*
* EXTRA INTEGER, default = 2
* The number of iterations performed after norm growth
* criterion is satisfied, should be at least 1.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TEN, ODM1
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1,
$ ODM1 = 1.0E-1 )
INTEGER MAXITS, EXTRA
PARAMETER ( MAXITS = 5, EXTRA = 2 )
* ..
* .. Local Scalars ..
INTEGER B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
$ INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
$ JBLK, JMAX, NBLK, NRMCHK
REAL EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL, SCL,
$ SEP, STPCRT, TOL, XJ, XJM, ZTR
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
* ..
* .. External Functions ..
INTEGER ISAMAX
REAL SASUM, SDOT, SLAMCH, SNRM2
EXTERNAL ISAMAX, SASUM, SDOT, SLAMCH, SNRM2
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SLAGTF, SLAGTS, SLARNV, SSCAL,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
DO 10 I = 1, M
IFAIL( I ) = 0
10 CONTINUE
*
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
INFO = -4
ELSE IF( ORFAC.LT.ZERO ) THEN
INFO = -8
ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE
DO 20 J = 2, M
IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
INFO = -6
GO TO 30
END IF
IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
$ THEN
INFO = -5
GO TO 30
END IF
20 CONTINUE
30 CONTINUE
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSTEIN2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 ) THEN
RETURN
ELSE IF( N.EQ.1 ) THEN
Z( 1, 1 ) = ONE
RETURN
END IF
*
* Get machine constants.
*
EPS = SLAMCH( 'Precision' )
*
* Initialize seed for random number generator SLARNV.
*
DO 40 I = 1, 4
ISEED( I ) = 1
40 CONTINUE
*
* Initialize pointers.
*
INDRV1 = 0
INDRV2 = INDRV1 + N
INDRV3 = INDRV2 + N
INDRV4 = INDRV3 + N
INDRV5 = INDRV4 + N
*
* Compute eigenvectors of matrix blocks.
*
J1 = 1
DO 160 NBLK = 1, IBLOCK( M )
*
* Find starting and ending indices of block nblk.
*
IF( NBLK.EQ.1 ) THEN
B1 = 1
ELSE
B1 = ISPLIT( NBLK-1 ) + 1
END IF
BN = ISPLIT( NBLK )
BLKSIZ = BN - B1 + 1
IF( BLKSIZ.EQ.1 )
$ GO TO 60
GPIND = J1
*
* Compute reorthogonalization criterion and stopping criterion.
*
ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
DO 50 I = B1 + 1, BN - 1
ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
$ ABS( E( I ) ) )
50 CONTINUE
ORTOL = ORFAC*ONENRM
*
STPCRT = SQRT( ODM1 / BLKSIZ )
*
* Loop through eigenvalues of block nblk.
*
60 CONTINUE
JBLK = 0
DO 150 J = J1, M
IF( IBLOCK( J ).NE.NBLK ) THEN
J1 = J
GO TO 160
END IF
JBLK = JBLK + 1
XJ = W( J )
*
* Skip all the work if the block size is one.
*
IF( BLKSIZ.EQ.1 ) THEN
WORK( INDRV1+1 ) = ONE
GO TO 120
END IF
*
* If eigenvalues j and j-1 are too close, add a relatively
* small perturbation.
*
IF( JBLK.GT.1 ) THEN
EPS1 = ABS( EPS*XJ )
PERTOL = TEN*EPS1
SEP = XJ - XJM
IF( SEP.LT.PERTOL )
$ XJ = XJM + PERTOL
END IF
*
ITS = 0
NRMCHK = 0
*
* Get random starting vector.
*
CALL SLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
*
* Copy the matrix T so it won't be destroyed in factorization.
*
CALL SCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
*
* Compute LU factors with partial pivoting ( PT = LU )
*
TOL = ZERO
CALL SLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
$ WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
$ IINFO )
*
* Update iteration count.
*
70 CONTINUE
ITS = ITS + 1
IF( ITS.GT.MAXITS )
$ GO TO 100
*
* Normalize and scale the righthand side vector Pb.
*
SCL = BLKSIZ*ONENRM*MAX( EPS,
$ ABS( WORK( INDRV4+BLKSIZ ) ) ) /
$ SASUM( BLKSIZ, WORK( INDRV1+1 ), 1 )
CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
*
* Solve the system LU = Pb.
*
CALL SLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
$ WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
$ WORK( INDRV1+1 ), TOL, IINFO )
*
* Reorthogonalize by modified Gram-Schmidt if eigenvalues are
* close enough.
*
IF( JBLK.EQ.1 )
$ GO TO 90
IF( ABS( XJ-XJM ).GT.ORTOL )
$ GPIND = J
*
IF( GPIND.NE.J ) THEN
DO 80 I = GPIND, J - 1
ZTR = -SDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ),
$ 1 )
CALL SAXPY( BLKSIZ, ZTR, Z( B1, I ), 1,
$ WORK( INDRV1+1 ), 1 )
80 CONTINUE
END IF
*
* Check the infinity norm of the iterate.
*
90 CONTINUE
JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
NRM = ABS( WORK( INDRV1+JMAX ) )
*
* Continue for additional iterations after norm reaches
* stopping criterion.
*
IF( NRM.LT.STPCRT )
$ GO TO 70
NRMCHK = NRMCHK + 1
IF( NRMCHK.LT.EXTRA+1 )
$ GO TO 70
*
GO TO 110
*
* If stopping criterion was not satisfied, update info and
* store eigenvector number in array ifail.
*
100 CONTINUE
INFO = INFO + 1
IFAIL( INFO ) = J
*
* Accept iterate as jth eigenvector.
*
110 CONTINUE
SCL = ONE / SNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
IF( WORK( INDRV1+JMAX ).LT.ZERO )
$ SCL = -SCL
CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
120 CONTINUE
DO 130 I = 1, N
Z( I, J ) = ZERO
130 CONTINUE
DO 140 I = 1, BLKSIZ
Z( B1+I-1, J ) = WORK( INDRV1+I )
140 CONTINUE
*
* Save the shift to check eigenvalue spacing at next
* iteration.
*
XJM = XJ
*
150 CONTINUE
160 CONTINUE
*
RETURN
*
* End of SSTEIN2
*
END
|