1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
SUBROUTINE ZLAHQR2( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
$ IHIZ, Z, LDZ, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 22, 2000
*
* .. Scalar Arguments ..
LOGICAL WANTT, WANTZ
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
* ..
* .. Array Arguments ..
COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* ZLAHQR2 is an auxiliary routine called by ZHSEQR to update the
* eigenvalues and Schur decomposition already computed by ZHSEQR, by
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
* This version of ZLAHQR (not the standard LAPACK version) uses a
* double-shift algorithm (like LAPACK's DLAHQR).
* Unlike the standard LAPACK convention, this does not assume the
* subdiagonal is real, nor does it work to preserve this quality if
* given.
*
* Arguments
* =========
*
* WANTT (input) LOGICAL
* = .TRUE. : the full Schur form T is required;
* = .FALSE.: only eigenvalues are required.
*
* WANTZ (input) LOGICAL
* = .TRUE. : the matrix of Schur vectors Z is required;
* = .FALSE.: Schur vectors are not required.
*
* N (input) INTEGER
* The order of the matrix H. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper triangular in rows and
* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
* ZLAHQR works primarily with the Hessenberg submatrix in rows
* and columns ILO to IHI, but applies transformations to all of
* H if WANTT is .TRUE..
* 1 <= ILO <= max(1,IHI); IHI <= N.
*
* H (input/output) COMPLEX*16 array, dimension (LDH,N)
* On entry, the upper Hessenberg matrix H.
* On exit, if WANTT is .TRUE., H is upper triangular in rows
* and columns ILO:IHI. If WANTT is .FALSE., the contents of H
* are unspecified on exit.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max(1,N).
*
* W (output) COMPLEX*16 array, dimension (N)
* The computed eigenvalues ILO to IHI are stored in the
* corresponding elements of W. If WANTT is .TRUE., the
* eigenvalues are stored in the same order as on the diagonal
* of the Schur form returned in H, with W(i) = H(i,i).
*
* ILOZ (input) INTEGER
* IHIZ (input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE..
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
* If WANTZ is .TRUE., on entry Z must contain the current
* matrix Z of transformations, and on exit Z has been updated;
* transformations are applied only to the submatrix
* Z(ILOZ:IHIZ,ILO:IHI). If WANTZ is .FALSE., Z is not
* referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* > 0: if INFO = i, ZLAHQR failed to compute all the
* eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1)
* iterations; elements i+1:ihi of W contain those
* eigenvalues which have been successfully computed.
*
* Further Details
* ===============
*
* Modified by Mark R. Fahey, June, 2000
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
DOUBLE PRECISION RZERO, RONE
PARAMETER ( RZERO = 0.0D+0, RONE = 1.0D+0 )
DOUBLE PRECISION DAT1, DAT2
PARAMETER ( DAT1 = 0.75D+0, DAT2 = -0.4375D+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NR, NZ
DOUBLE PRECISION CS, OVFL, S, SMLNUM, TST1, ULP, UNFL
COMPLEX*16 CDUM, H00, H10, H11, H12, H21, H22, H33, H33S,
$ H43H34, H44, H44S, SN, SUM, T1, T2, T3, V1, V2,
$ V3
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( 1 )
COMPLEX*16 V( 3 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANHS
EXTERNAL DLAMCH, ZLANHS
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, ZCOPY, ZLANV2, ZLARFG, ZROT
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( ILO.EQ.IHI ) THEN
W( ILO ) = H( ILO, ILO )
RETURN
END IF
*
NH = IHI - ILO + 1
NZ = IHIZ - ILOZ + 1
*
* Set machine-dependent constants for the stopping criterion.
* If norm(H) <= sqrt(OVFL), overflow should not occur.
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = RONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( NH / ULP )
*
* I1 and I2 are the indices of the first row and last column of H
* to which transformations must be applied. If eigenvalues only are
* being computed, I1 and I2 are set inside the main loop.
*
IF( WANTT ) THEN
I1 = 1
I2 = N
END IF
*
* ITN is the total number of QR iterations allowed.
*
ITN = 30*NH
*
* The main loop begins here. I is the loop index and decreases from
* IHI to ILO in steps of 1 or 2. Each iteration of the loop works
* with the active submatrix in rows and columns L to I.
* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
* H(L,L-1) is negligible so that the matrix splits.
*
I = IHI
10 CONTINUE
L = ILO
IF( I.LT.ILO )
$ GO TO 150
*
* Perform QR iterations on rows and columns ILO to I until a
* submatrix of order 1 or 2 splits off at the bottom because a
* subdiagonal element has become negligible.
*
DO 130 ITS = 0, ITN
*
* Look for a single small subdiagonal element.
*
DO 20 K = I, L + 1, -1
TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
IF( TST1.EQ.RZERO )
$ TST1 = ZLANHS( '1', I-L+1, H( L, L ), LDH, RWORK )
IF( CABS1( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
$ GO TO 30
20 CONTINUE
30 CONTINUE
L = K
IF( L.GT.ILO ) THEN
*
* H(L,L-1) is negligible
*
H( L, L-1 ) = ZERO
END IF
*
* Exit from loop if a submatrix of order 1 or 2 has split off.
*
IF( L.GE.I-1 )
$ GO TO 140
*
* Now the active submatrix is in rows and columns L to I. If
* eigenvalues only are being computed, only the active submatrix
* need be transformed.
*
IF( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
*
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
*
* Exceptional shift.
*
* S = ABS( DBLE( H( I,I-1 ) ) ) + ABS( DBLE( H( I-1,I-2 ) ) )
S = CABS1( H( I, I-1 ) ) + CABS1( H( I-1, I-2 ) )
H44 = DAT1*S
H33 = H44
H43H34 = DAT2*S*S
ELSE
*
* Prepare to use Wilkinson's shift.
*
H44 = H( I, I )
H33 = H( I-1, I-1 )
H43H34 = H( I, I-1 )*H( I-1, I )
END IF
*
* Look for two consecutive small subdiagonal elements.
*
DO 40 M = I - 2, L, -1
*
* Determine the effect of starting the double-shift QR
* iteration at row M, and see if this would make H(M,M-1)
* negligible.
*
H11 = H( M, M )
H22 = H( M+1, M+1 )
H21 = H( M+1, M )
H12 = H( M, M+1 )
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
V3 = H( M+2, M+1 )
S = CABS1( V1 ) + CABS1( V2 ) + ABS( V3 )
V1 = V1 / S
V2 = V2 / S
V3 = V3 / S
V( 1 ) = V1
V( 2 ) = V2
V( 3 ) = V3
IF( M.EQ.L )
$ GO TO 50
H00 = H( M-1, M-1 )
H10 = H( M, M-1 )
TST1 = CABS1( V1 )*( CABS1( H00 )+CABS1( H11 )+
$ CABS1( H22 ) )
IF( CABS1( H10 )*( CABS1( V2 )+CABS1( V3 ) ).LE.ULP*TST1 )
$ GO TO 50
40 CONTINUE
50 CONTINUE
*
* Double-shift QR step
*
DO 120 K = M, I - 1
*
* The first iteration of this loop determines a reflection G
* from the vector V and applies it from left and right to H,
* thus creating a nonzero bulge below the subdiagonal.
*
* Each subsequent iteration determines a reflection G to
* restore the Hessenberg form in the (K-1)th column, and thus
* chases the bulge one step toward the bottom of the active
* submatrix. NR is the order of G
*
NR = MIN( 3, I-K+1 )
IF( K.GT.M )
$ CALL ZCOPY( NR, H( K, K-1 ), 1, V, 1 )
CALL ZLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
IF( K.GT.M ) THEN
H( K, K-1 ) = V( 1 )
H( K+1, K-1 ) = ZERO
IF( K.LT.I-1 )
$ H( K+2, K-1 ) = ZERO
ELSE IF( M.GT.L ) THEN
* The real double-shift code uses H( K, K-1 ) = -H( K, K-1 )
* instead of the following.
H( K, K-1 ) = H( K, K-1 ) - DCONJG( T1 )*H( K, K-1 )
END IF
V2 = V( 2 )
T2 = T1*V2
IF( NR.EQ.3 ) THEN
V3 = V( 3 )
T3 = T1*V3
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
DO 60 J = K, I2
SUM = DCONJG( T1 )*H( K, J ) +
$ DCONJG( T2 )*H( K+1, J ) +
$ DCONJG( T3 )*H( K+2, J )
H( K, J ) = H( K, J ) - SUM
H( K+1, J ) = H( K+1, J ) - SUM*V2
H( K+2, J ) = H( K+2, J ) - SUM*V3
60 CONTINUE
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to min(K+3,I).
*
DO 70 J = I1, MIN( K+3, I )
SUM = T1*H( J, K ) + T2*H( J, K+1 ) + T3*H( J, K+2 )
H( J, K ) = H( J, K ) - SUM
H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
H( J, K+2 ) = H( J, K+2 ) - SUM*DCONJG( V3 )
70 CONTINUE
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
DO 80 J = ILOZ, IHIZ
SUM = T1*Z( J, K ) + T2*Z( J, K+1 ) +
$ T3*Z( J, K+2 )
Z( J, K ) = Z( J, K ) - SUM
Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
Z( J, K+2 ) = Z( J, K+2 ) - SUM*DCONJG( V3 )
80 CONTINUE
END IF
ELSE IF( NR.EQ.2 ) THEN
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
DO 90 J = K, I2
SUM = DCONJG( T1 )*H( K, J ) +
$ DCONJG( T2 )*H( K+1, J )
H( K, J ) = H( K, J ) - SUM
H( K+1, J ) = H( K+1, J ) - SUM*V2
90 CONTINUE
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to min(K+2,I).
*
DO 100 J = I1, MIN( K+2, I )
SUM = T1*H( J, K ) + T2*H( J, K+1 )
H( J, K ) = H( J, K ) - SUM
H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
100 CONTINUE
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
DO 110 J = ILOZ, IHIZ
SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
Z( J, K ) = Z( J, K ) - SUM
Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
110 CONTINUE
END IF
END IF
*
* Since at the start of the QR step we have for M > L
* H( K, K-1 ) = H( K, K-1 ) - DCONJG( T1 )*H( K, K-1 )
* then we don't need to do the following
* IF( K.EQ.M .AND. M.GT.L ) THEN
* If the QR step was started at row M > L because two
* consecutive small subdiagonals were found, then H(M,M-1)
* must also be updated by a factor of (1-T1).
* TEMP = ONE - T1
* H( m, m-1 ) = H( m, m-1 )*DCONJG( TEMP )
* END IF
120 CONTINUE
*
* Ensure that H(I,I-1) is real.
*
130 CONTINUE
*
* Failure to converge in remaining number of iterations
*
INFO = I
RETURN
*
140 CONTINUE
*
IF( L.EQ.I ) THEN
*
* H(I,I-1) is negligible: one eigenvalue has converged.
*
W( I ) = H( I, I )
*
ELSE IF( L.EQ.I-1 ) THEN
*
* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
*
* Transform the 2-by-2 submatrix to standard Schur form,
* and compute and store the eigenvalues.
*
CALL ZLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
$ H( I, I ), W( I-1 ), W( I ), CS, SN )
*
IF( WANTT ) THEN
*
* Apply the transformation to the rest of H.
*
IF( I2.GT.I )
$ CALL ZROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
$ CS, SN )
CALL ZROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS,
$ DCONJG( SN ) )
END IF
IF( WANTZ ) THEN
*
* Apply the transformation to Z.
*
CALL ZROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS,
$ DCONJG( SN ) )
END IF
*
END IF
*
* Decrement number of remaining iterations, and return to start of
* the main loop with new value of I.
*
ITN = ITN - ITS
I = L - 1
GO TO 10
*
150 CONTINUE
RETURN
*
* End of ZLAHQR2
*
END
|