File: pcget22.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (291 lines) | stat: -rw-r--r-- 9,508 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
      SUBROUTINE PCGET22( TRANSA, TRANSE, TRANSW, N, A, DESCA, E, DESCE,
     $                    W, WORK, DESCW, RWORK, RESULT )
*
*  -- ScaLAPACK testing routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     August 14, 2001
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSA, TRANSE, TRANSW
      INTEGER            N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCE( * ), DESCW( * )
      REAL               RESULT( 2 ), RWORK( * )
      COMPLEX            A( * ), E( * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCGET22 does an eigenvector check.
*
*  The basic test is:
*
*     RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*
*  using the 1-norm.  It also tests the normalization of E:
*
*     RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                  j
*
*  where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*  vector.  The max-norm of a complex n-vector x in this case is the
*  maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
*
*  Arguments
*  ==========
*
*  TRANSA  (input) CHARACTER*1
*          Specifies whether or not A is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose
*          = 'C':  Conjugate transpose
*
*  TRANSE  (input) CHARACTER*1
*          Specifies whether or not E is transposed.
*          = 'N':  No transpose, eigenvectors are in columns of E
*          = 'T':  Transpose, eigenvectors are in rows of E
*          = 'C':  Conjugate transpose, eigenvectors are in rows of E
*
*  TRANSW  (input) CHARACTER*1
*          Specifies whether or not W is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose, same as TRANSW = 'N'
*          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (*)
*          The matrix whose eigenvectors are in E.
*
*  DESCA   (input) INTEGER array, dimension(*)
*
*  E       (input) COMPLEX array, dimension (*)
*          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*          are stored in the columns of E, if TRANSE = 'T' or 'C', the
*          eigenvectors are stored in the rows of E.
*
*  DESCE   (input) INTEGER array, dimension(*)
*
*  W       (input) COMPLEX array, dimension (N)
*          The eigenvalues of A.
*
*  WORK    (workspace) COMPLEX array, dimension (*)
*  DESCW   (input) INTEGER array, dimension(*)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESULT  (output) REAL array, dimension (2)
*          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                       j
*  Further Details
*  ===============
*
*  Contributed by Mark Fahey, June, 2000
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMA, NORME
      INTEGER            ICOL, II, IROW, ITRNSE, ITRNSW, J, JCOL, JJ,
     $                   JROW, JVEC, LDA, LDE, LDW, MB, MYCOL, MYROW,
     $                   NB, NPCOL, NPROW, CONTXT, RA, CA, RSRC, CSRC
      REAL               ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
     $                   ULP, UNFL
      COMPLEX            CDUM, WTEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               PSLAMCH, PCLANGE
      EXTERNAL           LSAME, PSLAMCH, PCLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, SGAMN2D, SGAMX2D, INFOG2L,
     $                   PCAXPY, PCGEMM, PCLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, CONJG, AIMAG, MAX, MIN
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Initialize RESULT (in case N=0)
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      CONTXT = DESCA( CTXT_ )
      RSRC = DESCA( RSRC_ )
      CSRC = DESCA( CSRC_ )
      NB = DESCA( NB_ )
      MB = DESCA( MB_ )
      LDA = DESCA( LLD_ )
      LDE = DESCE( LLD_ )
      LDW = DESCW( LLD_ )
      CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      UNFL = PSLAMCH( CONTXT, 'Safe minimum' )
      ULP = PSLAMCH( CONTXT, 'Precision' )
*
      ITRNSE = 0
      ITRNSW = 0
      NORMA = 'O'
      NORME = 'O'
*
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
         NORMA = 'I'
      END IF
*
      IF( LSAME( TRANSE, 'T' ) ) THEN
         ITRNSE = 1
         NORME = 'I'
      ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
         ITRNSE = 2
         NORME = 'I'
      END IF
*
      IF( LSAME( TRANSW, 'C' ) ) THEN
         ITRNSW = 1
      END IF
*
*     Normalization of E:
*
      ENRMIN = ONE / ULP
      ENRMAX = ZERO
      IF( ITRNSE.EQ.0 ) THEN
         DO 20 JVEC = 1, N
            TEMP1 = ZERO
            DO 10 J = 1, N
               CALL INFOG2L( J, JVEC, DESCE, NPROW, NPCOL, MYROW, MYCOL,
     $                       IROW, ICOL, II, JJ )
               IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
                  TEMP1 = MAX( TEMP1, CABS1( E( ( ICOL-1 )*LDE+
     $                    IROW ) ) )
               END IF
   10       CONTINUE
            IF( MYCOL.EQ.JJ ) THEN
               CALL SGAMX2D( CONTXT, 'Col', ' ', 1, 1, TEMP1, 1, RA, CA,
     $                       -1, -1, -1 )
               ENRMIN = MIN( ENRMIN, TEMP1 )
               ENRMAX = MAX( ENRMAX, TEMP1 )
            END IF
   20    CONTINUE
         CALL SGAMX2D( CONTXT, 'Row', ' ', 1, 1, ENRMAX, 1, RA, CA, -1,
     $                 -1, -1 )
         CALL SGAMN2D( CONTXT, 'Row', ' ', 1, 1, ENRMIN, 1, RA, CA, -1,
     $                 -1, -1 )
      ELSE
         DO 40 J = 1, N
            TEMP1 = ZERO
            DO 30 JVEC = 1, N
               CALL INFOG2L( J, JVEC, DESCE, NPROW, NPCOL, MYROW, MYCOL,
     $                       IROW, ICOL, II, JJ )
               IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
                  TEMP1 = MAX( TEMP1, CABS1( E( ( ICOL-1 )*LDE+
     $                    IROW ) ) )
               END IF
   30       CONTINUE
            IF( MYROW.EQ.II ) THEN
               CALL SGAMX2D( CONTXT, 'Row', ' ', 1, 1, TEMP1, 1, RA, CA,
     $                       -1, -1, -1 )
               ENRMIN = MIN( ENRMIN, TEMP1 )
               ENRMAX = MAX( ENRMAX, TEMP1 )
            END IF
   40    CONTINUE
         CALL SGAMX2D( CONTXT, 'Row', ' ', 1, 1, ENRMAX, 1, RA, CA, -1,
     $                 -1, -1 )
         CALL SGAMN2D( CONTXT, 'Row', ' ', 1, 1, ENRMIN, 1, RA, CA, -1,
     $                 -1, -1 )
      END IF
*
*     Norm of A:
*
      ANORM = MAX( PCLANGE( NORMA, N, N, A, 1, 1, DESCA, RWORK ), UNFL )
*
*     Norm of E:
*
      ENORM = MAX( PCLANGE( NORME, N, N, E, 1, 1, DESCE, RWORK ), ULP )
*
*     Norm of error:
*
*     Error =  AE - EW
*
      CALL PCLASET( 'Full', N, N, CZERO, CZERO, WORK, 1, 1, DESCW )
*
      DO 60 JCOL = 1, N
         IF( ITRNSW.EQ.0 ) THEN
            WTEMP = W( JCOL )
         ELSE
            WTEMP = CONJG( W( JCOL ) )
         END IF
*
         IF( ITRNSE.EQ.0 ) THEN
            CALL PCAXPY( N, WTEMP, E, 1, JCOL, DESCE, 1, WORK, 1, JCOL,
     $                   DESCW, 1 )
         ELSE IF( ITRNSE.EQ.1 ) THEN
            CALL PCAXPY( N, WTEMP, E, JCOL, 1, DESCE, N, WORK, 1, JCOL,
     $                   DESCW, 1 )
         ELSE
            CALL PCAXPY( N, CONJG( WTEMP ), E, JCOL, 1, DESCE, N, WORK,
     $                   1, JCOL, DESCW, 1 )
            DO 50 JROW = 1, N
               CALL INFOG2L( JROW, JCOL, DESCW, NPROW, NPCOL, MYROW,
     $                       MYCOL, IROW, ICOL, II, JJ )
               IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
                  WORK( ( JCOL-1 )*LDW+JROW )
     $               = CONJG( WORK( ( JCOL-1 )*LDW+JROW ) )
               END IF
   50       CONTINUE
         END IF
   60 CONTINUE
*
      CALL PCGEMM( TRANSA, TRANSE, N, N, N, CONE, A, 1, 1, DESCA, E, 1,
     $             1, DESCE, -CONE, WORK, 1, 1, DESCW )
*
      ERRNRM = PCLANGE( 'One', N, N, WORK, 1, 1, DESCW, RWORK ) / ENORM
*
*     Compute RESULT(1) (avoiding under/overflow)
*
      IF( ANORM.GT.ERRNRM ) THEN
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
         ELSE
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
         END IF
      END IF
*
*     Compute RESULT(2) : the normalization error in E.
*
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
     $              ( REAL( N )*ULP )
*
      RETURN
*
*     End of PCGET22
*
      END