1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
*
*
SUBROUTINE PCGSEPCHK( IBTYPE, MS, NV, A, IA, JA, DESCA, B, IB, JB,
$ DESCB, THRESH, Q, IQ, JQ, DESCQ, C, IC, JC,
$ DESCC, W, WORK, LWORK, TSTNRM, RESULT )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 15, 1997
*
* .. Scalar Arguments ..
INTEGER IA, IB, IBTYPE, IC, IQ, JA, JB, JC, JQ, LWORK,
$ MS, NV, RESULT
REAL THRESH, TSTNRM
* ..
* .. Array Arguments ..
*
INTEGER DESCA( * ), DESCB( * ), DESCC( * ), DESCQ( * )
REAL W( * ), WORK( * )
COMPLEX A( * ), B( * ), C( * ), Q( * )
* ..
*
*
* Purpose
* =======
*
* PCGSEPCHK checks a decomposition of the form
*
* A Q = B Q D or
* A B Q = Q D or
* B A Q = Q D
*
* where A is a symmetric matrix, B is
* symmetric positive definite, Q is orthogonal, and D is diagonal.
*
* One of the following test ratios is computed:
*
* IBTYPE = 1: TSTNRM = | A Q - B Q D | / ( |A| |Q| n ulp )
*
* IBTYPE = 2: TSTNRM = | A B Q - Q D | / ( |A| |Q| n ulp )
*
* IBTYPE = 3: TSTNRM = | B A Q - Q D | / ( |A| |Q| n ulp )
*
*
* Notes
* =====
*
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
* Arguments
* =========
*
* MP = number of local rows in A, B and Q
* MQ = number of local columns in A
* NQ = number of local columns in B and Q
*
* IBTYPE (input) INTEGER
* The form of the symmetric generalized eigenproblem.
* = 1: A*Q = (lambda)*B*Q
* = 2: A*B*Q = (lambda)*Q
* = 3: B*A*Q = (lambda)*Q
*
* MS (global input) INTEGER
* Matrix size.
* The number of global rows in A, B, C and Q
* Also, the number of columns in A
*
* NV (global input) INTEGER
* Number of eigenvectors
* The number of global columns in C and Q.
*
* A (local input) REAL pointer to an
* array in local memory of dimension (LLD_A, LOCc(JA+N-1)).
* This array contains the local pieces of the M-by-N
* distributed test matrix A
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCA (global and local input) INTEGER array of dimension 8
* The array descriptor for the distributed matrix A.
*
* B (local input) REAL pointer to an
* array in local memory of dimension (LLD_B, LOCc(JB+N-1)).
* This array contains the local pieces of the M-by-N
* distributed test matrix B
*
* IB (global input) INTEGER
* B's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JB (global input) INTEGER
* B's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCB (global and local input) INTEGER array of dimension 8
* The array descriptor for the distributed matrix B.
*
* THRESH (input) REAL
* A test will count as "failed" if the "error", computed as
* described below, exceeds THRESH. Note that the error
* is scaled to be O(1), so THRESH should be a reasonably
* small multiple of 1, e.g., 10 or 100. In particular,
* it should not depend on the precision (single vs. double)
* or the size of the matrix. It must be at least zero.
*
* Q (local input) REAL array
* global dimension (MS, NV),
* local dimension (DESCA( DLEN_ ), NQ)
*
* Contains the eigenvectors as computed by PSSYEVX
*
* IQ (global input) INTEGER
* Q's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JQ (global input) INTEGER
* Q's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCQ (global and local input) INTEGER array of dimension 8
* The array descriptor for the distributed matrix Q.
*
* C (local workspace) REAL array,
* global dimension (MS, NV),
* local dimension (DESCA( DLEN_ ), MQ)
*
* Accumulator for computing AQ -QL
*
* IC (global input) INTEGER
* C's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JC (global input) INTEGER
* C's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCC (global and local input) INTEGER array of dimension 8
* The array descriptor for the distributed matrix C.
*
* W (global input) REAL array, dimension (NV)
*
* Contains the computed eigenvalues
*
* WORK (local workspace) REAL array,
* dimension (LWORK)
*
* LWORK (local input) INTEGER
* The length of the array WORK.
* LWORK >= NUMROC( NV, DESCA( NB_ ), MYCOL, 0, NPCOL )
*
* TSTNRM (global output) REAL
*
* RESULT (global output) INTEGER
* 0 if the test passes
* 1 if the test fails
*
* .. Local Scalars ..
*
INTEGER I, INFO, MYCOL, MYROW, NPCOL, NPROW, NQ
REAL ANORM, ULP
* ..
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
COMPLEX CONE, CNEGONE, CZERO
PARAMETER ( CONE = 1.0E+0, CNEGONE = -1.0E+0,
$ CZERO = 0.0E+0 )
* ..
* .. External Functions ..
INTEGER NUMROC
REAL PCLANGE, SLAMCH
EXTERNAL NUMROC, PCLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, PCGEMM, PCSSCAL,
$ PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
RESULT = 0
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
INFO = 0
CALL CHK1MAT( MS, 1, MS, 2, IA, JA, DESCA, 7, INFO )
CALL CHK1MAT( MS, 1, MS, 2, IB, JB, DESCB, 11, INFO )
CALL CHK1MAT( MS, 1, NV, 2, IQ, JQ, DESCQ, 16, INFO )
CALL CHK1MAT( MS, 1, NV, 2, IB, JB, DESCB, 20, INFO )
*
IF( INFO.EQ.0 ) THEN
*
NQ = NUMROC( NV, DESCA( NB_ ), MYCOL, 0, NPCOL )
*
IF( IQ.NE.1 ) THEN
INFO = -14
ELSE IF( JQ.NE.1 ) THEN
INFO = -15
ELSE IF( IA.NE.1 ) THEN
INFO = -5
ELSE IF( JA.NE.1 ) THEN
INFO = -6
ELSE IF( IB.NE.1 ) THEN
INFO = -9
ELSE IF( JB.NE.1 ) THEN
INFO = -10
ELSE IF( LWORK.LT.NQ ) THEN
INFO = -23
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCA( CTXT_ ), 'PCGSEPCHK', -INFO )
RETURN
END IF
*
RESULT = 0
ULP = SLAMCH( 'Epsilon' )
*
* Compute product of Max-norms of A and Q.
*
ANORM = PCLANGE( 'M', MS, MS, A, IA, JA, DESCA, WORK )*
$ PCLANGE( 'M', MS, NV, Q, IQ, JQ, DESCQ, WORK )
IF( ANORM.EQ.ZERO )
$ ANORM = ONE
*
IF( IBTYPE.EQ.1 ) THEN
*
* Norm of AQ - BQD
*
* C = AQ
*
CALL PCGEMM( 'N', 'N', MS, NV, MS, CONE, A, IA, JA, DESCA, Q,
$ IQ, JQ, DESCQ, CZERO, C, IC, JC, DESCC )
*
* Q = QD
*
DO 10 I = 1, NV
CALL PCSSCAL( MS, W( I ), Q, IQ, JQ+I-1, DESCQ, 1 )
10 CONTINUE
*
* C = C - BQ (i.e. AQ-BQD)
*
CALL PCGEMM( 'N', 'N', MS, NV, MS, CONE, B, IB, JB, DESCB, Q,
$ IQ, JQ, DESCQ, CNEGONE, C, IC, JC, DESCC )
*
TSTNRM = ( PCLANGE( 'M', MS, NV, C, IC, JC, DESCC, WORK ) /
$ ANORM ) / ( MAX( MS, 1 )*ULP )
*
*
ELSE IF( IBTYPE.EQ.2 ) THEN
*
* Norm of ABQ - QD
*
*
* C = BQ
*
CALL PCGEMM( 'N', 'N', MS, NV, MS, CONE, B, IB, JB, DESCB, Q,
$ IQ, JQ, DESCQ, CZERO, C, IC, JC, DESCC )
*
* Q = QD
*
DO 20 I = 1, NV
CALL PCSSCAL( MS, W( I ), Q, IQ, JQ+I-1, DESCQ, 1 )
20 CONTINUE
*
* Q = AC - Q
*
CALL PCGEMM( 'N', 'N', MS, NV, MS, CONE, A, IA, JA, DESCA, C,
$ IC, JC, DESCC, CNEGONE, Q, IQ, JQ, DESCQ )
*
TSTNRM = ( PCLANGE( 'M', MS, NV, Q, IQ, JQ, DESCQ, WORK ) /
$ ANORM ) / ( MAX( MS, 1 )*ULP )
*
ELSE IF( IBTYPE.EQ.3 ) THEN
*
* Norm of BAQ - QD
*
*
* C = AQ
*
CALL PCGEMM( 'N', 'N', MS, NV, MS, CONE, A, IA, JA, DESCA, Q,
$ IQ, JQ, DESCQ, CZERO, C, IC, JC, DESCC )
*
* Q = QD
*
DO 30 I = 1, NV
CALL PCSSCAL( MS, W( I ), Q, IQ, JQ+I-1, DESCQ, 1 )
30 CONTINUE
*
* Q = BC - Q
*
CALL PCGEMM( 'N', 'N', MS, NV, MS, CONE, B, IB, JB, DESCB, C,
$ IC, JC, DESCC, CNEGONE, Q, IQ, JQ, DESCQ )
*
TSTNRM = ( PCLANGE( 'M', MS, NV, Q, IQ, JQ, DESCQ, WORK ) /
$ ANORM ) / ( MAX( MS, 1 )*ULP )
*
END IF
*
IF( TSTNRM.GT.THRESH .OR. ( TSTNRM-TSTNRM.NE.0.0E0 ) ) THEN
RESULT = 1
END IF
RETURN
*
* End of PCGSEPCHK
*
END
|