File: pclagsy.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (301 lines) | stat: -rw-r--r-- 11,217 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
*
*
      SUBROUTINE PCLAGHE( N, K, D, A, IA, JA, DESCA, ISEED, ORDER, WORK,
     $                    LWORK, INFO )
*
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IA, INFO, JA, K, LWORK, N, ORDER
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), ISEED( 4 )
      REAL               D( * )
      COMPLEX            A( * ), WORK( * )
*     ..
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Purpose
*  =======
*
*  PCLAGHE generates a real Hermitian matrix A, by pre- and post-
*  multiplying a real diagonal matrix D with a random orthogonal matrix:
*  A = U*D*U'.
*
*  This is just a quick implementation which will be replaced in the
*  future.  The random orthogonal matrix is computed by creating a
*  random matrix and running QR on it.  This requires vastly more
*  computation than necessary, but not significantly more communication
*  than is used in the rest of this rouinte, and hence is not that much
*  slower than an efficient solution.
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The size of the matrix A.  N >= 0.
*
*  K       (global input) INTEGER
*          The number of nonzero subdiagonals within the band of A.
*          0 <= K <= N-1.
*          ### K must be 0 or N-1, 0 < K < N-1 is not supported yet.
*
*  D       (global input) COMPLEX array, dimension (N)
*          The diagonal elements of the diagonal matrix D.
*
*  A       (local output) COMPLEX array
*          Global dimension (N, N), local dimension (NP, NQ)
*          The generated n by n Hermitian matrix A (the full matrix is
*          stored).
*
*  IA      (global input) INTEGER
*          A's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JA      (global input) INTEGER
*          A's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  ISEED   (global input/output) INTEGER array, dimension (4)
*          On entry, the seed of the random number generator; the array
*          elements must be between 0 and 4095, and ISEED(4) must be
*          odd.
*          On exit, the seed is updated and will remain identical on
*          all processes in the context.
*
*  ORDER   (global input) INTEGER
*          Number of reflectors in the matrix Q
*          At present, ORDER .NE. N is not supported
*
*  WORK    (local workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (local input) INTEGER dimension of WORK
*        LWORK >= SIZETMS as returned by PCLASIZESEP
*
*
*  INFO    (local output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CSRC_A, I, IACOL, IAROW, ICOFFA, II, IIROW,
     $                   INDAA, INDTAU, INDWORK, IPOSTPAD, IPREPAD,
     $                   IROFFA, ISIZEHEEVX, ISIZESUBTST, ISIZETST,
     $                   JJCOL, LDAA, LII, LIII, LJJ, LJJJ, LWMIN, MAXI,
     $                   MB_A, MYCOL, MYROW, NB_A, NP, NPCOL, NPROW, NQ,
     $                   RSIZECHK, RSIZEHEEVX, RSIZEQTQ, RSIZESUBTST,
     $                   RSIZETST, RSRC_A, SIZEHEEVX, SIZEMQRLEFT,
     $                   SIZEMQRRIGHT, SIZEQRF, SIZESUBTST, SIZETMS,
     $                   SIZETST, SIZEHEEVD, RSIZEHEEVD, ISIZEHEEVD
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, CLASET, PCGEQRF,
     $                   PCLASIZESEP, PCMATGEN, PCUNMQR, PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            INDXG2P, NUMROC
      EXTERNAL           INDXG2P, NUMROC
*     ..
*     .. Intrinsic Functions ..
*
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*     Initialize grid information
*
      CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
*     Check LWORK
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 700+CTXT_ )
      ELSE
         CALL CHK1MAT( N, 1, N, 1, IA, JA, DESCA, 7, INFO )
      END IF
*
      LDAA = DESCA( LLD_ )
      MB_A = DESCA( MB_ )
      NB_A = DESCA( NB_ )
      RSRC_A = DESCA( RSRC_ )
      CSRC_A = DESCA( CSRC_ )
      IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW )
      IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
      IROFFA = MOD( IA-1, MB_A )
      ICOFFA = MOD( JA-1, NB_A )
      NP = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL )
      IPREPAD = 0
      IPOSTPAD = 0
      CALL PCLASIZESEP( DESCA, IPREPAD, IPOSTPAD, SIZEMQRLEFT,
     $                  SIZEMQRRIGHT, SIZEQRF, SIZETMS, RSIZEQTQ,
     $                  RSIZECHK, SIZEHEEVX, RSIZEHEEVX, ISIZEHEEVX,
     $                  SIZEHEEVD, RSIZEHEEVD, ISIZEHEEVD,
     $                  SIZESUBTST, RSIZESUBTST, ISIZESUBTST, SIZETST,
     $                  RSIZETST, ISIZETST )
      LWMIN = SIZETMS
*
*     Test the input arguments
*
      IF( INFO.EQ.0 ) THEN
         IF( K.LT.0 .OR. K.GT.N-1 ) THEN
            INFO = -2
         ELSE IF( N.NE.ORDER ) THEN
            INFO = -9
         ELSE IF( LWORK.LT.LWMIN ) THEN
            INFO = -11
         END IF
      END IF
      IF( INFO.LT.0 ) THEN
         CALL PXERBLA( DESCA( CTXT_ ), 'PCLAGHE', -INFO )
         RETURN
      END IF
*
      INDAA = 1
      INDTAU = INDAA + LDAA*MAX( 1, NQ )
      INDWORK = INDTAU + MAX( 1, NQ )
*
      IF( K.NE.0 ) THEN
         CALL CLASET( 'A', LDAA, NQ, CZERO, CZERO, WORK( INDAA ), LDAA )
*
*
*        Build a random matrix
*
*
         CALL PCMATGEN( DESCA( CTXT_ ), 'N', 'N', N, ORDER,
     $                  DESCA( MB_ ), DESCA( NB_ ), WORK( INDAA ),
     $                  DESCA( LLD_ ), DESCA( RSRC_ ), DESCA( CSRC_ ),
     $                  ISEED( 1 ), 0, NP, 0, NQ, MYROW, MYCOL, NPROW,
     $                  NPCOL )
         CALL PCGEQRF( N, ORDER, WORK( INDAA ), IA, JA, DESCA,
     $                 WORK( INDTAU ), WORK( INDWORK ), SIZEQRF, INFO )
*
      END IF
*
*     Build a diagonal matrix A with the eigenvalues specified in D
*
      CALL CLASET( 'A', NP, NQ, CZERO, CZERO, A, DESCA( LLD_ ) )
*
      IIROW = 0
      JJCOL = 0
      LII = 1
      LJJ = 1
*
      DO 20 II = 1, N, DESCA( MB_ )
         MAXI = MIN( N, II+DESCA( MB_ )-1 )
         IF( ( MYROW.EQ.IIROW ) .AND. ( MYCOL.EQ.JJCOL ) ) THEN
            LIII = LII
            LJJJ = LJJ
            DO 10 I = II, MAXI
               A( LIII+( LJJJ-1 )*DESCA( LLD_ ) ) = D( I )
               LIII = LIII + 1
               LJJJ = LJJJ + 1
   10       CONTINUE
         END IF
         IF( MYROW.EQ.IIROW )
     $      LII = LII + DESCA( MB_ )
         IF( MYCOL.EQ.JJCOL )
     $      LJJ = LJJ + DESCA( MB_ )
         IIROW = MOD( IIROW+1, NPROW )
         JJCOL = MOD( JJCOL+1, NPCOL )
   20 CONTINUE
*
*     A = Q * A
*
      IF( K.NE.0 ) THEN
*
         CALL PCUNMQR( 'L', 'Conjugate transpose', N, N, ORDER,
     $                 WORK( INDAA ), IA, JA, DESCA, WORK( INDTAU ), A,
     $                 IA, JA, DESCA, WORK( INDWORK ), SIZEMQRLEFT,
     $                 INFO )
*
*
*        A = A * Q'
*
*
         CALL PCUNMQR( 'R', 'N', N, N, ORDER, WORK( INDAA ), IA, JA,
     $                 DESCA, WORK( INDTAU ), A, IA, JA, DESCA,
     $                 WORK( INDWORK ), SIZEMQRRIGHT, INFO )
*
      END IF
*
*     End of PCLAGHE
*
      END