1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
SUBROUTINE PDGEHDRV( N, ILO, IHI, A, IA, JA, DESCA, TAU, WORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 28, 2001
*
* .. Scalar Arguments ..
INTEGER IA, IHI, ILO, JA, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PDGEHDRV computes sub( A ) = A(IA:IA+N-1,JA:JA+N-1) from the
* orthogonal matrix Q, the Hessenberg matrix, and the array TAU
* returned by PDGEHRD:
* sub( A ) := Q * H * Q'
*
* Arguments
* =========
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* ILO (global input) INTEGER
* IHI (global input) INTEGER
* It is assumed that sub( A ) is already upper triangular in
* rows and columns 1:ILO-1 and IHI+1:N. If N > 0,
* 1 <= ILO <= IHI <= N; otherwise set ILO = 1, IHI = N.
*
* A (local input/local output) DOUBLE PRECISION pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the N-by-N
* general distributed matrix sub( A ) reduced to Hessenberg
* form by PDGEHRD. The upper triangle and the first sub-
* diagonal of sub( A ) contain the upper Hessenberg matrix H,
* and the elements below the first subdiagonal, with the array
* TAU, represent the orthogonal matrix Q as a product of
* elementary reflectors. On exit, the original distributed
* N-by-N matrix sub( A ) is recovered.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* TAU (local input) DOUBLE PRECISION array, dimension LOCc(JA+N-2)
* The scalar factors of the elementary reflectors returned by
* PDGEHRD. TAU is tied to the distributed matrix A.
*
* WORK (local workspace) DOUBLE PRECISION array, dimension (LWORK).
* LWORK >= NB*NB + NB*IHLP + MAX[ NB*( IHLP+INLQ ),
* NB*( IHLQ + MAX[ IHIP,
* IHLP+NUMROC( NUMROC( IHI-ILO+LOFF+1, NB, 0, 0,
* NPCOL ), NB, 0, 0, LCMQ ) ] ) ]
*
* where NB = MB_A = NB_A,
* LCM is the least common multiple of NPROW and NPCOL,
* LCM = ILCM( NPROW, NPCOL ), LCMQ = LCM / NPCOL,
*
* IROFFA = MOD( IA-1, NB ),
* IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ),
* IHIP = NUMROC( IHI+IROFFA, NB, MYROW, IAROW, NPROW ),
*
* ILROW = INDXG2P( IA+ILO-1, NB, MYROW, RSRC_A, NPROW ),
* ILCOL = INDXG2P( JA+ILO-1, NB, MYCOL, CSRC_A, NPCOL ),
* IHLP = NUMROC( IHI-ILO+IROFFA+1, NB, MYROW, ILROW, NPROW ),
* IHLQ = NUMROC( IHI-ILO+IROFFA+1, NB, MYCOL, ILCOL, NPCOL ),
* INLQ = NUMROC( N-ILO+IROFFA+1, NB, MYCOL, ILCOL, NPCOL ).
*
* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IACOL, IAROW, ICTXT, IHLP, II, IOFF, IPT,
$ IPV, IPW, IV, J, JB, JJ, JL, K, MYCOL, MYROW,
$ NB, NPCOL, NPROW
* ..
* .. Local Arrays ..
INTEGER DESCV( DLEN_ )
* ..
* .. External Functions ..
INTEGER INDXG2P, NUMROC
EXTERNAL INDXG2P, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCSET, INFOG2L, PDLARFB,
$ PDLARFT, PDLACPY, PDLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Quick return if possible
*
IF( IHI-ILO.LE.0 )
$ RETURN
*
NB = DESCA( MB_ )
IOFF = MOD( IA+ILO-2, NB )
CALL INFOG2L( IA+ILO-1, JA+ILO-1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, II, JJ, IAROW, IACOL )
IHLP = NUMROC( IHI-ILO+IOFF+1, NB, MYROW, IAROW, NPROW )
*
IPT = 1
IPV = IPT + NB * NB
IPW = IPV + IHLP * NB
JL = MAX( ( ( JA+IHI-2 ) / NB ) * NB + 1, JA + ILO - 1 )
CALL DESCSET( DESCV, IHI-ILO+IOFF+1, NB, NB, NB, IAROW,
$ INDXG2P( JL, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL ), ICTXT, MAX( 1, IHLP ) )
*
DO 10 J = JL, ILO+JA+NB-IOFF-1, -NB
JB = MIN( JA+IHI-J-1, NB )
I = IA + J - JA
K = I - IA + 1
IV = K - ILO + IOFF + 1
*
* Compute upper triangular matrix T from TAU.
*
CALL PDLARFT( 'Forward', 'Columnwise', IHI-K, JB, A, I+1, J,
$ DESCA, TAU, WORK( IPT ), WORK( IPW ) )
*
* Copy Householder vectors into workspace.
*
CALL PDLACPY( 'All', IHI-K, JB, A, I+1, J, DESCA, WORK( IPV ),
$ IV+1, 1, DESCV )
*
* Zero out the strict lower triangular part of A.
*
CALL PDLASET( 'Lower', IHI-K-1, JB, ZERO, ZERO, A, I+2, J,
$ DESCA )
*
* Apply block Householder transformation from Left.
*
CALL PDLARFB( 'Left', 'No transpose', 'Forward', 'Columnwise',
$ IHI-K, N-K+1, JB, WORK( IPV ), IV+1, 1, DESCV,
$ WORK( IPT ), A, I+1, J, DESCA, WORK( IPW ) )
*
* Apply block Householder transformation from Right.
*
CALL PDLARFB( 'Right', 'Transpose', 'Forward', 'Columnwise',
$ IHI, IHI-K, JB, WORK( IPV ), IV+1, 1, DESCV,
$ WORK( IPT ), A, IA, J+1, DESCA, WORK( IPW ) )
*
DESCV( CSRC_ ) = MOD( DESCV( CSRC_ ) + NPCOL - 1, NPCOL )
*
10 CONTINUE
*
* Handle the first block separately
*
IV = IOFF + 1
I = IA + ILO - 1
J = JA + ILO - 1
JB = MIN( NB-IOFF, JA+IHI-J-1 )
*
* Compute upper triangular matrix T from TAU.
*
CALL PDLARFT( 'Forward', 'Columnwise', IHI-ILO, JB, A, I+1, J,
$ DESCA, TAU, WORK( IPT ), WORK( IPW ) )
*
* Copy Householder vectors into workspace.
*
CALL PDLACPY( 'All', IHI-ILO, JB, A, I+1, J, DESCA, WORK( IPV ),
$ IV+1, 1, DESCV )
*
* Zero out the strict lower triangular part of A.
*
IF( IHI-ILO.GT.0 )
$ CALL PDLASET( 'Lower', IHI-ILO-1, JB, ZERO, ZERO, A, I+2, J,
$ DESCA )
*
* Apply block Householder transformation from Left.
*
CALL PDLARFB( 'Left', 'No transpose', 'Forward', 'Columnwise',
$ IHI-ILO, N-ILO+1, JB, WORK( IPV ), IV+1, 1, DESCV,
$ WORK( IPT ), A, I+1, J, DESCA, WORK( IPW ) )
*
* Apply block Householder transformation from Right.
*
CALL PDLARFB( 'Right', 'Transpose', 'Forward', 'Columnwise', IHI,
$ IHI-ILO, JB, WORK( IPV ), IV+1, 1, DESCV,
$ WORK( IPT ), A, IA, J+1, DESCA, WORK( IPW ) )
*
RETURN
*
* End of PDGEHDRV
*
END
|