File: pdsvdchk.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (367 lines) | stat: -rw-r--r-- 13,835 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      SUBROUTINE PDSVDCHK( M, N, A, IA, JA, DESCA, U, IU, JU, DESCU, VT,
     $                     IVT, JVT, DESCVT, S, THRESH, WORK, LWORK,
     $                     RESULT, CHK, MTM )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IA, IU, IVT, JA, JU, JVT, LWORK, M, N
      DOUBLE PRECISION   CHK, MTM, THRESH
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCU( * ), DESCVT( * ),
     $                   RESULT( * )
      DOUBLE PRECISION   A( * ), S( * ), U( * ), VT( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  For given two-dimensional matrices A, U, VT, and one-dimensional
*  array D compute the following four tests:
*
*  (1)   | A - U*diag(S) VT | / ( |A| max(M,N) ulp )
*
*  (2)   | I - U'*U | / ( M ulp )
*
*  (3)   | I - VT*VT' | / ( N ulp ),
*
*  (4)   S contains SIZE = MIN( M, N )  nonnegative values in
*   decreasing order.
*   It then compares result of computations (1)-(3)
*   with TRESH and returns results of comparisons and test (4) in
*   RESULT(I). When the i-th test fails, value of RESULT( I ) is set
*   to 1.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*     MP = number of local rows in A and  U
*     NQ = number of local columns in A and VT
*     SIZEP = number of local rows in VT
*     SIZEQ = number of local columns in U
*
*  M      (global input) INTEGER
*          Matrix size.
*          The number of global rows in A and U and
*
*  N      (global input) INTEGER
*          The number of global columns in A and VT.
*
*  A       (input) block cyclic distributed DOUBLE PRECISION array,
*          global dimension (M, N), local dimension (DESCA( DLEN_ ), NQ)
*          Contains the original test matrix.
*
*  IA      (global input) INTEGER
*          The global row index of the submatrix of the distributed
*          matrix A to operate on.
*
*  JA      (global input) INTEGER
*          The global column index of the submatrix of the distributed
*          matrix A to operate on.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix A.
*
*  U       (local input) DOUBLE PRECISION array
*           global dimension (M, SIZE), local dimension
*          (DESCU( DLEN_ ), SIZEQ)
*           Contains left singular vectors of matrix A.
*
*  IU      (global input) INTEGER
*          The global row index of the submatrix of the distributed
*          matrix U to operate on.
*
*  JU      (global input) INTEGER
*          The global column index of the submatrix of the distributed
*          matrix U to operate on.
*
*  DESCU   (global and local input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix U.
*
*  VT       (local input) DOUBLE PRECISION array
*           global dimension (SIZE, N), local dimension
*           (DESCVT( DLEN_ ), NQ)
*           Contains right singular vectors of matrix A.
*
*  IVT     (global input) INTEGER
*          The global row index of the submatrix of the distributed
*          matrix VT to operate on.
*
*  JVT      (global input) INTEGER
*          The global column index of the submatrix of the distributed
*          matrix VT to operate on.
*
*  DESCVT   (global and local input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix VT.
*
*  S       (global input) DOUBLE PRECISION array, dimension (SIZE)
*          Contains the computed singular values
*
*  THRESH  (input) DOUBLE PRECISION
*          A test will count as "failed" if the "error", computed as
*          described below, exceeds THRESH.  Note that the error
*          is scaled to be O(1), so THRESH should be a reasonably
*          small multiple of 1, e.g., 10 or 100.  In particular,
*          it should not depend on the precision (single vs. double)
*          or the size of the matrix.  It must be at least zero.
*
*  WORK    (local workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK   (local input) INTEGER
*          The length of the array WORK.
*          LWORK >= 1 + SIZEQ*SIZEP + MAX[WORK(pdlange(size,size)),
*          WORK(pdlange(m,n))],
*          where
*          SIZEQ = NUMROC( SIZE, DESCU( NB_ ), MYCOL, 0, NPCOL ),
*          SIZEP = NUMROC( SIZE, DESCVT( MB_ ), MYROW, 0, NPROW ),
*          and worekspaces required to call pdlange are
*          WORK(pdlange(size,size)) < MAX(SIZEQ0,2) < SIZEB +2,
*          WORK(pdlange(m,n)) < MAX(NQ0,2) < SIZEB +2,
*          SIZEB = MAX(M, N)
*          Finally, upper limit on required workspace is
*          LWORK >  1 + SIZEQ*SIZEP + SIZEB + 2
*
*  RESULT  (global input/output) INTEGER array. Four first elements of
*          the array are set to 0 or 1 depending on passing four
*          respective tests ( see above in Purpose ). The elements of
*          RESULT are set to
*          0 if the test passes i.e.
*            | A - U*diag(S)*VT | / ( |A| max(M,N) ulp ) <= THRESH
*          1 if the test fails  i.e.
*            | A - U*diag(S)*VT | / ( |A| max(M,N) ulp ) >  THRESH
*
*  CHK     (global output) DOUBLE PRECISION
*           value of the | A - U*diag(S) VT | / ( |A| max(M,N) ulp )
*
*  MTM     (global output) DOUBLE PRECISION
*           maximum of the two values:
*            | I - U'*U | / ( M ulp ) and  | I - VT*VT' | / ( N ulp )
*
* ======================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, ONE, MONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, MONE = -1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, LDR, LOCALCOL, LWMIN, MP, MX, MYCOL,
     $                   MYROW, NPCOL, NPROW, NQ, PCOL, PTRR, PTRWORK,
     $                   SIZE, SIZEP, SIZEPOS, SIZEQ
      DOUBLE PRECISION   FIRST, NORMA, NORMAI, NORMU, NORMVT, SECOND,
     $                   THRESHA, ULP
*     ..
*     .. Local Arrays ..
      INTEGER            DESCR( DLEN_ )
*     ..
*     .. External Functions ..
      INTEGER            INDXG2L, INDXG2P, NUMROC
      DOUBLE PRECISION   PDLAMCH, PDLANGE
      EXTERNAL           INDXG2L, INDXG2P, NUMROC, PDLAMCH, PDLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCINIT, DSCAL,
     $                   PDELSET, PDGEMM, PDLASET, PXERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*     This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*CSRC_*DTYPE_*M_*N_*RSRC_.LT.0 ) RETURN
*
*     Test the input parameters.
*
      CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
      INFO = 0
      SIZE = MIN( M, N )
*
*     Sizepos is a number of parameters to pdsvdchk plus one. It's used
*     for the error reporting.
*
      SIZEPOS = 22
      IF( NPROW.EQ.-1 ) THEN
         INFO = -607
      ELSE
         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
         CALL CHK1MAT( M, 1, SIZE, SIZEPOS, IU, JU, DESCU, 10, INFO )
         CALL CHK1MAT( SIZE, SIZEPOS, N, 2, IVT, JVT, DESCVT, 14, INFO )
      END IF
*
      IF( INFO.EQ.0 ) THEN
*
*     Calculate workspace
*
         MP = NUMROC( M, DESCA( MB_ ), MYROW, 0, NPROW )
         NQ = NUMROC( N, DESCA( NB_ ), MYCOL, 0, NPCOL )
         SIZEP = NUMROC( SIZE, DESCVT( MB_ ), MYROW, 0, NPROW )
         SIZEQ = NUMROC( SIZE, DESCU( NB_ ), MYCOL, 0, NPCOL )
         MX = MAX( SIZEQ, NQ )
         LWMIN = 2 + SIZEQ*SIZEP + MAX( 2, MX )
         WORK( 1 ) = LWMIN
         IF( LWORK.EQ.-1 )
     $      GO TO 40
         IF( LWORK.LT.LWMIN ) THEN
            INFO = -18
         ELSE IF( THRESH.LE.0 ) THEN
            INFO = -16
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( DESCA( CTXT_ ), 'PDSVDCHK', -INFO )
         RETURN
      END IF
*
      LDR = MAX( 1, SIZEP )
      ULP = PDLAMCH( DESCA( CTXT_ ), 'P' )
      NORMAI = PDLANGE( '1', M, N, A, IA, JA, DESCA, WORK )
*
*     Allocate array R of global dimension SIZE x SIZE for testing
*
      PTRR = 2
      PTRWORK = PTRR + SIZEQ*SIZEP
*
      CALL DESCINIT( DESCR, SIZE, SIZE, DESCVT( MB_ ), DESCU( NB_ ), 0,
     $               0, DESCA( CTXT_ ), LDR, INFO )
*
*     Test 2. Form identity matrix R  and make  check norm(U'*U - I )
*
      CALL PDLASET( 'Full', SIZE, SIZE, ZERO, ONE, WORK( PTRR ), 1, 1,
     $              DESCR )
      CALL PDGEMM( 'T', 'N', SIZE, SIZE, M, ONE, U, IU, JU, DESCU, U, 
     $             IU, JU, DESCU, MONE, WORK( PTRR ), 1, 1, DESCR )
*
      NORMU = PDLANGE( '1', SIZE, SIZE, WORK( PTRR ), 1, 1, DESCR,
     $        WORK( PTRWORK ) )
*
      NORMU = NORMU / ULP / SIZE / THRESH
      IF( NORMU.GT.1. )
     $   RESULT( 2 ) = 1
*
*     Test3. Form identity matrix R  and check norm(VT*VT' - I )
*
      CALL PDLASET( 'Full', SIZE, SIZE, ZERO, ONE, WORK( PTRR ), 1, 1,
     $              DESCR )
      CALL PDGEMM( 'N', 'T', SIZE, SIZE, N, ONE, VT, IVT, JVT, DESCVT,
     $             VT, IVT, JVT, DESCVT, MONE, WORK( PTRR ), 
     $             1, 1, DESCR )
      NORMVT = PDLANGE( '1', SIZE, SIZE, WORK( PTRR ), 1, 1, DESCR,
     $         WORK( PTRWORK ) )
*
      NORMVT = NORMVT / ULP / SIZE / THRESH
      IF( NORMVT.GT.1. )
     $   RESULT( 3 ) = 1
*
      MTM = MAX( NORMVT, NORMU )*THRESH
*
*     Test 1.
*     Initialize R = diag( S )
*
      CALL PDLASET( 'Full', SIZE, SIZE, ZERO, ZERO, WORK( PTRR ), 1, 1,
     $              DESCR )
*
      DO 10 I = 1, SIZE
         CALL PDELSET( WORK( PTRR ), I, I, DESCR, S( I ) )
   10 CONTINUE
*
*     Calculate U = U*R
*
      DO 20 I = 1, SIZE
         PCOL = INDXG2P( I, DESCU( NB_ ), 0, 0, NPCOL )
         LOCALCOL = INDXG2L( I, DESCU( NB_ ), 0, 0, NPCOL )
         IF( MYCOL.EQ.PCOL ) THEN
            CALL DSCAL( MP, S( I ), U( ( LOCALCOL-1 )*DESCU( LLD_ )+1 ),
     $                  1 )
         END IF
   20 CONTINUE
*
*     Calculate A = U*VT - A
*
      CALL PDGEMM( 'N', 'N', M, N, SIZE, ONE, U, IU, JU, DESCU, VT,
     $             IVT, JVT, DESCVT, MONE, A, IA, JA, DESCA )
*
      NORMA = PDLANGE( '1', M, N, A, IA, JA, DESCA, WORK( PTRWORK ) )
      THRESHA = NORMAI*MAX( M, N )*ULP*THRESH
*
      IF( NORMA.GT.THRESHA )
     $   RESULT( 1 ) = 1
*
      IF( THRESHA.EQ.0 ) THEN
         CHK = 0.0D0
      ELSE
         CHK = NORMA / THRESHA*THRESH
      END IF
*
*     Test 4.
*
      DO 30 I = 1, SIZE - 1
         FIRST = S( I )
         SECOND = S( I+1 )
         IF( FIRST.LT.SECOND )
     $      RESULT( 4 ) = 1
   30 CONTINUE
   40 CONTINUE
      RETURN
      END