1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
SUBROUTINE PDSVDCMP( M, N, JOBTYPE, S, SC, U, UC, IU, JU, DESCU,
$ VT, VTC, IVT, JVT, DESCVT, THRESH, RESULT,
$ DELTA, WORK, LWORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IU, IVT, JOBTYPE, JU, JVT, LWORK, M, N
DOUBLE PRECISION DELTA, THRESH
* ..
* .. Array Arguments ..
INTEGER DESCU( * ), DESCVT( * ), RESULT( * )
DOUBLE PRECISION S( * ), SC( * ), U( * ), UC( * ), VT( * ),
$ VTC( * ), WORK( * )
* ..
*
* Purpose
* ========
* Testing how accurately "full" and "partial" decomposition options
* provided by PDGESVD correspond to each other.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* ==========
*
* M (global input) INTEGER
* Number of rows of the distributed matrix, for which
* SVD was calculated
*
* N (global input) INTEGER
* Number of columns of the distributed matrix, for which
* SVD was calculated
*
* JOBTYPE (global input) INTEGER
* Depending on the value of this parameter,
* the following comparisons are performed:
*
* JOBTYPE | COMPARISON
* -------------------------------------------
* 2 | | U - UC | / ( M ulp ) > THRESH,
* 3 | | VT - VTC | / ( N ulp ) > THRESH
*
* In addition, for JOBTYPE = 2:4 comparison
* | S1 - S2 | / ( SIZE ulp |S| ) > THRESH
* is performed. Positive result of any of the comparisons
* typically indicates erroneous computations and sets
* to one corresponding element of array RESULT
*
* S (global input) DOUBLE PRECISION array of singular values
* calculated for JOBTYPE equal to 1
*
* SC (global input) DOUBLE PRECISION array of singular values
* calculated for JOBTYPE nonequal to 1
*
* U (local input) DOUBLE PRECISION array of left singular
* vectors calculated for JOBTYPE equal to 1, local
* dimension (MP, SIZEQ), global dimension (M, SIZE)
*
* UC (local input) DOUBLE PRECISION array of left singular
* vectors calculated for JOBTYPE non equal to 1, local
* dimension (MP, SIZEQ), global dimension (M, SIZE)
*
* IU (global input) INTEGER
* The row index in the global array U indicating the first
* row of sub( U ).
*
* JU (global input) INTEGER
* The column index in the global array U indicating the
* first column of sub( U ).
*
* DESCU (global input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrix U and UC
*
* V (local input) DOUBLE PRECISION array of right singular
* vectors calculated for JOBTYPE equal to 1, local
* dimension (SIZEP, NQ), global dimension (SIZE, N)
*
* VC (local input) DOUBLE PRECISION array of right singular
* vectors calculated for JOBTYPE non equal to 1, local
* dimension (SIZEP, NQ), global dimension (SIZE, N)
*
* IVT (global input) INTEGER
* The row index in the global array VT indicating the first
* row of sub( VT ).
*
* JVT (global input) INTEGER
* The column index in the global array VT indicating the
* first column of sub( VT ).
*
* DESCVT (global input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrix VT and
* VTC
*
* THRESH (global input) DOUBLE PRECISION
* The threshold value for the test ratios. A result is
* included in the output file if RESULT >= THRESH. The test
* ratios are scaled to be O(1), so THRESH should be a small
* multiple of 1, e.g., 10 or 100. To have every test ratio
* printed, use THRESH = 0.
*
* RESULT (global input/output) INTEGER array.
* Every nonzero entry corresponds to erroneous computation.
*
* DELTA (global output) DOUBLE PRECISION
* maximum of the available of the following three values
* | U - UC | / ( M ulp THRESH ),
* | VT - VT | / ( N ulp THRESH ),
* | S1 - S2 | / ( SIZE ulp |S| THRESH )
*
* WORK (local workspace/output) DOUBLE PRECISION array,
* dimension (LWORK)
* On exit, WORK(1) returns the optimal LWORK.
*
* LWORK (local input) INTEGER
* The dimension of the array WORK.
*
* ======================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER COLPTR, I, INFO, J, LWMIN, MYCOL, MYROW, NPCOL,
$ NPROW, NQ, RESULTS, SIZE, SIZEPOS, SIZEQ
DOUBLE PRECISION ACCUR, CMP, NORMDIFS, NORMDIFU, NORMDIFV,
$ NORMS, ULP
* ..
* .. External Functions ..
INTEGER NUMROC
DOUBLE PRECISION DLANGE, PDLAMCH, PDLANGE
EXTERNAL NUMROC, DLANGE, PDLAMCH, PDLANGE
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*DLEN_*DTYPE_*MB_*M_*N_*RSRC_.LT.0 )
$ RETURN
*
RESULTS = 0
NORMDIFS = 0
NORMDIFU = 0
NORMDIFV = 0
SIZE = MIN( M, N )
*
* Sizepos is a number of parameters to pdsvdcmp plus one. It's used
* for the error reporting.
*
SIZEPOS = 17
INFO = 0
CALL BLACS_GRIDINFO( DESCU( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
IF( NPROW.EQ.-1 ) THEN
INFO = -607
ELSE
CALL CHK1MAT( M, 1, SIZE, SIZEPOS, 1, 1, DESCU, 8, INFO )
CALL CHK1MAT( SIZE, SIZEPOS, N, 2, 1, 1, DESCVT, 11, INFO )
END IF
*
IF( INFO.EQ.0 ) THEN
*
* Calculate workspace.
*
SIZEQ = NUMROC( SIZE, DESCU( NB_ ), MYCOL, 0, NPCOL )
NQ = NUMROC( N, DESCVT( NB_ ), MYCOL, 0, NPCOL )
LWMIN = MAX( SIZEQ, NQ ) + 4
WORK( 1 ) = LWMIN
IF( LWORK.EQ.-1 )
$ GO TO 60
IF( LWORK.LT.LWMIN ) THEN
INFO = -16
ELSE IF( THRESH.LE.0 ) THEN
INFO = -12
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCU( CTXT_ ), 'PDSVDCMP', -INFO )
RETURN
END IF
*
ULP = PDLAMCH( DESCU( CTXT_ ), 'P' )
*
* Make comparison of singular values.
*
NORMS = DLANGE( '1', SIZE, 1, S, SIZE, WORK )
DO 10 I = 1, SIZE
SC( I ) = S( I ) - SC( I )
10 CONTINUE
*
NORMDIFS = DLANGE( '1', SIZE, 1, SC, SIZE, WORK )
ACCUR = ULP*SIZE*NORMS*THRESH
*
IF( NORMDIFS.GT.ACCUR )
$ RESULTS = 1
IF( NORMDIFS.EQ.0 .AND. ACCUR.EQ.0 ) THEN
NORMDIFS = 0
ELSE
NORMDIFS = NORMDIFS / ACCUR
END IF
*
IF( JOBTYPE.EQ.2 ) THEN
*
RESULT( 5 ) = RESULTS
ACCUR = ULP*M*THRESH
DO 30 J = 1, SIZEQ
COLPTR = DESCU( LLD_ )*( J-1 )
DO 20 I = 1, DESCU( LLD_ )
UC( I+COLPTR ) = U( I+COLPTR ) - UC( I+COLPTR )
20 CONTINUE
30 CONTINUE
*
NORMDIFU = PDLANGE( '1', M, SIZE, UC, IU, JU, DESCU, WORK )
*
IF( NORMDIFU.GE.ACCUR )
$ RESULT( 6 ) = 1
IF( NORMDIFU.EQ.0 .AND. ACCUR.EQ.0 ) THEN
NORMDIFU = 0
ELSE
NORMDIFU = NORMDIFU / ACCUR
END IF
*
ELSE IF( JOBTYPE.EQ.3 ) THEN
*
RESULT( 7 ) = RESULTS
ACCUR = ULP*N*THRESH
DO 50 J = 1, NQ
COLPTR = DESCVT( LLD_ )*( J-1 )
DO 40 I = 1, DESCVT( LLD_ )
VTC( I+COLPTR ) = VT( I+COLPTR ) - VTC( I+COLPTR )
40 CONTINUE
50 CONTINUE
*
NORMDIFV = PDLANGE( '1', SIZE, N, VTC, IVT, JVT, DESCVT, WORK )
*
IF( NORMDIFV.GE.ACCUR )
$ RESULT( 8 ) = 1
*
IF( NORMDIFV.EQ.0 .AND. ACCUR.EQ.0 ) THEN
NORMDIFV = 0
ELSE
NORMDIFV = NORMDIFV / ACCUR
END IF
*
ELSE IF( JOBTYPE.EQ.4 ) THEN
*
RESULT( 9 ) = RESULTS
*
END IF
*
CMP = MAX( NORMDIFV, NORMDIFU )
DELTA = MAX( CMP, NORMDIFS )
*
60 CONTINUE
*
* End of PDSVDCMP
*
RETURN
END
|