File: pdsvdtst.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (652 lines) | stat: -rw-r--r-- 23,640 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
      SUBROUTINE PDSVDTST( M, N, NPROW, NPCOL, NB, ISEED, THRESH, WORK,
     $                     RESULT, LWORK, NOUT )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            LWORK, M, N, NB, NOUT, NPCOL, NPROW
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 ), RESULT( 9 )
      DOUBLE PRECISION   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PDSVDTST checks the singular value decomposition (SVD) routine
*  PDGESVD. PDGESVD factors A = U diag(S) VT, where U and VT are
*  orthogonal and diag(S) is diagonal with the entries of the array
*  S on its diagonal. The entries of S are the singular values, stored 
*  in decreasing order. U and VT can be optionally not computed,
*  computed and overwritten on A, or computed partially.
*
*  A is M by N. Let SIZE = min( M, N ). S has dimension SIZE by SIZE.
*  U is M by SIZE and VT is SIZE by  N. PDGESVD optionally calculates
*  U and VT, depending on the values of its parameters JOBU and JOBVT.
*  There are four possible  combinations of "job" parameters for a call
*  to PDGESVD, that correspond to four values of internal index JOBTYPE.
*  The table below shows the mapping between "job" parameters of 
*  PDGESVD and respective values of the index JOBTYPE together 
*  with matrices computed for each type of the job.
*
*
*              |   JOBU = 'V'     |       JOBU = 'N'
*   ---------- -------------------------------------------
*   JOBVT = 'V'|  JOBTYPE = 1     |   JOBTYPE = 3
*              |  U1, S1, VT1     |   S3, VT3
*   ---------- ------------------------------------------
*   JOBVT = 'N'|  JOBTYPE = 2     |   JOBTYPE = 4
*              |  U2, S2          |   S4
*
*
*  When PDSVDTST is called, a number of matrix "types" are specified.
*  For each type of matrix, and for the minimal workspace as well as
*  for larger than minimal workspace an M x N matrix "A" with known
*  singular values is generated and used to test the SVD routines.
*  For each matrix, A will be factored as A = U diag(S) VT and the
*  following 9 tests computed:
*
*  (1)   | A - U1 diag(S1) VT1 | / ( |A| max(M,N) ulp )
*
*  (2)   | I - U1'U1 | / ( M ulp )
*
*  (3)   | I - VT1 VT1' | / ( N ulp ),
*
*  (4)   S1 contains SIZE  nonnegative values in decreasing order.
*        (Return 0 if true, 1/ULP if false.)
*
*  (5)   | S1 - S2 | / ( SIZE ulp |S| )
*
*  (6)   | U1 - U2 | / ( M ulp )
*
*  (7)   | S1 - S3 | / ( SIZE ulp |S| )
*
*  (8)   | VT1 - VT3 | / ( N ulp )
*
*  (9)   | S1 - S4 | / (  SIZE ulp |S| )
*
*  Currently, the list of possible  matrix types is:
*
*  (1)  The zero matrix.
*
*  (2)  The identity matrix.
*
*  (3)  A diagonal matrix with evenly spaced entries
*       1, ..., ULP.
*       (ULP = (first number larger than 1) - 1 )
*
*  (4)  A matrix of the form  U D VT, where U, VT are orthogonal and
*       D has evenly spaced entries 1, ..., ULP.
*
*  (5) Same as (4), but multiplied by SQRT( overflow threshold )
*
*  (6) Same as (4), but multiplied by SQRT( underflow threshold )
*
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  ==========
*
*  M      (global input) INTEGER dimension
*         The value of the matrix row dimension.
*
*  N      (global input) INTEGER dimension
*         The value of the matrix column dimension.
*
*  NPROW  (global input) INTEGER
*         Number of process rows
*
*  NPCOL  (global input) INTEGER
*         Number of process columns
*
*  NB     (global input) INTEGER
*         The block size of the matrix A. NB >=1.
*
*  ISEED  (global input/local output) INTEGER array, dimension (4)
*         On entry, the seed of the random number generator.  The array
*         elements should be between 0 and 4095; if not they will be
*         reduced mod 4096.  Also, ISEED(4) must be odd.
*         On exit, ISEED is changed and can be used in the next call to
*         SDRVBD to continue the same random number sequence.
*
*  THRESH (global input) DOUBLE PRECISION
*         The threshold value for the test ratios.  A result is
*         included in the output file if RESULT >= THRESH.  The test
*         ratios are scaled to be O(1), so THRESH should be a small
*         multiple of 1, e.g., 10 or 100.  To have every test ratio
*         printed, use THRESH = 0.
*
*  RESULT (global input/output) INTEGER array of dimension 9. Initially
*         RESULT( I ) = 0. On the output, RESULT ( I ) = 1 if test I
*         ( see above ) wasn't passed.
*
*  WORK   (local workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK  (local input) INTEGER
*         Dimension of the array WORK. It is defined as follows
*         LWORK = 1 + 2*LDA*NQ + 3*SIZE +
*         MAX(WPDLAGGE, LDU*SIZEQ + LDVT*NQ + MAX(LDU*SIZEQ, LDVT*NQ)
*         + WPDGESVD + MAX( WPDSVDCHK, WPDSVDCMP)),
*         where WPDLAGGE, WPDGESVD, WPDSVDCHK,  WPDSVDCMP are amounts
*         of workspace required respectively by PDLAGGE, PDGESVD,
*         PDSVDCHK, PDSVDCMP.
*         Here
*         LDA = NUMROC( M, NB, MYROW, 0, NPROW ), LDU = LDA,
*         LDVT = NUMROC( SIZE, NB, MYROW, 0, NPROW ),
*         NQ = NUMROC( N, NB, MYCOL, 0, NPCOL ),
*         SIZEQ = NUMROC( SIZE, NB, MYCOL, 0, NPCOL ).
*         Values of the variables WPDLAGGE, WPDGESVD, WPDSVDCHK,
*         WPDSVDCMP are found by "dummy" calls to
*         the respective routines. In every "dummy" call, variable
*         LWORK is set to -1, thus causing respective routine
*         immediately return required workspace in WORK(1) without
*         executing any calculations
*
*  NOUT   (local input) INTEGER
*         The unit number for output file.  Only used on node 0.
*         NOUT = 6, output to screen,
*         NOUT = 0, output to stderr.
*  =====================================================================
*
*     .. Parameters ..
      INTEGER             BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                    MB_, NB_, RSRC_, CSRC_, LLD_, NTYPES
      PARAMETER           ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                    CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                    RSRC_ = 7, CSRC_ = 8, LLD_ = 9, NTYPES = 6 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          HETERO, JOBU, JOBVT
      INTEGER            CONTEXT, DINFO, I, IA, IAM, INFO, ITYPE, IU,
     $                   IVT, JA, JOBTYPE, JU, JVT, LDA, LDU, LDVT,
     $                   LLWORK, LWMIN, MYCOL, MYROW, NNODES, NQ, PASS,
     $                   PTRA, PTRAC, PTRD, PTRWORK, PTRS, PTRSC, PTRU,
     $                   PTRUC, PTRVT, PTRVTC, SETHET, SIZE, SIZEQ,
     $                   WPDGESVD, WPDLAGGE, WPDSVDCHK, WPDSVDCMP
      DOUBLE PRECISION   CHK, DELTA, H, MTM, OVFL, RTOVFL, RTUNFL, ULP,
     $                   UNFL
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINFO, BLACS_GRIDINIT, BLACS_PINFO,
     $                   BLACS_SET,
     $                   DESCINIT, DGAMN2D, DGAMX2D, DLABAD, DSCAL,
     $                   IGAMN2D, IGAMX2D, IGEBR2D, IGEBS2D, PDELSET,
     $                   PDGESVD, PDLACPY, PDLAGGE, PDLASET, PDSVDCHK,
     $                   PDSVDCMP, PXERBLA, SLBOOT, SLCOMBINE, SLTIMER
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           NUMROC, PDLAMCH
*     ..
*     .. Local Arrays ..
      INTEGER            DESCA( DLEN_ ), DESCU( DLEN_ ),
     $                   DESCVT( DLEN_ ), ITMP( 2 )
      DOUBLE PRECISION   CTIME( 1 ), WTIME( 1 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*     This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*CSRC_*DTYPE_*LLD_*MB_*M_*NB_*N_*RSRC_.LT.0 )
     $   RETURN
*
      CALL BLACS_PINFO( IAM, NNODES )
      CALL BLACS_GET( -1, 0, CONTEXT )
      CALL BLACS_GRIDINIT( CONTEXT, 'R', NPROW, NPCOL )
      CALL BLACS_GRIDINFO( CONTEXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     If this process is not a part of the contex, bail out now.
*
      IF( ( MYROW.GE.NPROW ) .OR. ( MYROW.LT.0 ) .OR.
     $    ( MYCOL.GE.NPCOL ) .OR. ( MYCOL.LT.0 ) )GO TO 110
      CALL BLACS_SET( CONTEXT, 15, 1 )
      INFO = 0
*
*     Check input parameters.
*
      IF( M.LE.0 ) THEN
         INFO = -1
      ELSE IF( N.LE.0 ) THEN
         INFO = -2
      ELSE IF( NPROW.LE.0 ) THEN
         INFO = -3
      ELSE IF( NPCOL.LE.0 ) THEN
         INFO = -4
      ELSE IF( NB.LE.0 ) THEN
         INFO = -5
      ELSE IF( THRESH.LE.0 ) THEN
         INFO = -7
      END IF
*
      SIZE = MIN( M, N )
*
*     Initialize matrix descriptors.
*
      IA  = 1
      JA  = 1
      IU  = 1
      JU  = 1
      IVT = 1
      JVT = 1
*
      LDA = NUMROC( M, NB, MYROW, 0, NPROW )
      LDA = MAX( 1, LDA )
      NQ = NUMROC( N, NB, MYCOL, 0, NPCOL )
      LDU = LDA
      SIZEQ = NUMROC( SIZE, NB, MYCOL, 0, NPCOL )
      LDVT = NUMROC( SIZE, NB, MYROW, 0, NPROW )
      LDVT = MAX( 1, LDVT )
      CALL DESCINIT( DESCA, M, N, NB, NB, 0, 0, CONTEXT, LDA, DINFO )
      CALL DESCINIT( DESCU, M, SIZE, NB, NB, 0, 0, CONTEXT, LDU, DINFO )
      CALL DESCINIT( DESCVT, SIZE, N, NB, NB, 0, 0, CONTEXT, LDVT,
     $               DINFO )
*
*     Set some pointers to work array in order to do "dummy" calls.
*
      PTRA = 2
      PTRAC = PTRA + LDA*NQ
      PTRD = PTRAC + LDA*NQ
      PTRS = PTRD + SIZE
      PTRSC = PTRS + SIZE
      PTRWORK = PTRSC + SIZE
*
      PTRU = PTRWORK
      PTRVT = PTRWORK
      PTRUC = PTRWORK
      PTRVTC = PTRWORK
*
*     "Dummy" calls -- return required workspace in work(1) without
*     any calculation. 
*
      CALL PDLAGGE( M, N, WORK( PTRD ), WORK( PTRA ), IA, JA, DESCA,
     $              ISEED, SIZE, WORK( PTRWORK ), -1, DINFO )
      WPDLAGGE = INT( WORK( PTRWORK ) )
*
      CALL PDGESVD( 'V', 'V', M, N, WORK( PTRA ), IA, JA, DESCA, 
     $              WORK( PTRS ), WORK( PTRU ), IU, JU, DESCU, 
     $              WORK( PTRVT ), IVT, JVT, DESCVT,
     $              WORK( PTRWORK ), -1, DINFO )
      WPDGESVD = INT( WORK( PTRWORK ) )
*
      CALL PDSVDCHK( M, N, WORK( PTRAC ), IA, JA, DESCA, WORK( PTRUC ),
     $               IU, JU, DESCU, WORK( PTRVT ), IVT, JVT, DESCVT, 
     $               WORK( PTRS ), THRESH, WORK( PTRWORK ), -1, 
     $               RESULT, CHK, MTM )
      WPDSVDCHK = INT( WORK( PTRWORK ) )
*
      CALL PDSVDCMP( M, N, 1, WORK( PTRS ), WORK( PTRSC ), WORK( PTRU ),
     $               WORK( PTRUC ), IU, JU, DESCU, WORK( PTRVT ),
     $               WORK( PTRVTC ), IVT, JVT, DESCVT, THRESH, 
     $               RESULT, DELTA, WORK( PTRWORK ), -1 )
      WPDSVDCMP = INT( WORK( PTRWORK ) )
*
*     Calculation of workspace at last.
*
      LWMIN = 1 + 2*LDA*NQ + 3*SIZE +
     $        MAX( WPDLAGGE, LDU*SIZEQ+LDVT*NQ+MAX( LDU*SIZEQ,
     $        LDVT*NQ )+WPDGESVD+MAX( WPDSVDCHK, WPDSVDCMP ) )
      WORK( 1 ) = LWMIN
*
*     If this is a "dummy" call, return.
*
      IF( LWORK.EQ.-1 )
     $   GO TO 120
      IF( INFO.EQ.0 ) THEN
         IF( LWORK.LT.LWMIN ) THEN
            INFO = -10
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( DESCA( CTXT_ ), 'PDSVDTST', -INFO )
         RETURN
      END IF
*
      ULP = PDLAMCH( CONTEXT, 'P' )
      UNFL = PDLAMCH( CONTEXT, 'Safe min' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      RTUNFL = SQRT( UNFL )
      RTOVFL = SQRT( OVFL )
*
*     This ensures that everyone starts out with the same seed.
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         CALL IGEBS2D( CONTEXT, 'a', ' ', 4, 1, ISEED, 4 )
      ELSE
         CALL IGEBR2D( CONTEXT, 'a', ' ', 4, 1, ISEED, 4, 0, 0 )
      END IF
*
*     Loop over matrix types.
*
      DO 100 ITYPE = 1, NTYPES
*
         PASS = 0
         SETHET = 0
         PTRWORK = PTRSC + SIZE
         LLWORK = LWORK - PTRWORK + 1
*
*        Compute A.
*
         IF( ITYPE.EQ.1 ) THEN
*
*           Zero Matrix.
*
            DO 10 I = 1, SIZE
               WORK( PTRD+I-1 ) = ZERO
   10       CONTINUE
*
            CALL PDLASET( 'All', M, N, ZERO, ZERO, WORK( PTRA ), 
     $                    IA, JA, DESCA )
*
         ELSE IF( ITYPE.EQ.2 ) THEN
*
*           Identity Matrix.
*
            DO 20 I = 1, SIZE
               WORK( PTRD+I-1 ) = ONE
   20       CONTINUE
*
            CALL PDLASET( 'All', M, N, ZERO, ONE, WORK( PTRA ), 
     $                    IA, JA, DESCA )
*
         ELSE IF( ITYPE.GT.2 ) THEN
*
*           Preset Singular Values.
*
            IF( SIZE.NE.1 ) THEN
               H = ( ULP-1 ) / ( SIZE-1 )
               DO 30 I = 1, SIZE
                  WORK( PTRD+I-1 ) = 1 + H*( I-1 )
   30          CONTINUE
            ELSE
               WORK( PTRD ) = 1
            END IF
*
            IF( ITYPE.EQ.3 ) THEN
*
*              Diagonal Matrix with specified singular values.
*
               CALL PDLASET( 'All', M, N, ZERO, ZERO, WORK( PTRA ), 
     $                       IA, JA, DESCA )
*
               DO 40 I = 1, SIZE
                  CALL PDELSET( WORK( PTRA ), I, I, DESCA,
     $                          WORK( PTRD+I-1 ) )
   40          CONTINUE
*
            ELSE IF( ITYPE.EQ.4 ) THEN
*
*              General matrix with specified singular values.
*
               CALL PDLAGGE( M, N, WORK( PTRD ), WORK( PTRA ), IA, JA,
     $                       DESCA, ISEED, SIZE, WORK( PTRWORK ),
     $                       LLWORK, INFO )
*
            ELSE IF( ITYPE.EQ.5 ) THEN
*
*              Singular values scaled by overflow.
*
               CALL DSCAL( SIZE, RTOVFL, WORK( PTRD ), 1 )
*
               CALL PDLAGGE( M, N, WORK( PTRD ), WORK( PTRA ), IA, JA,
     $                       DESCA, ISEED, SIZE, WORK( PTRWORK ),
     $                       LLWORK, INFO )
*
            ELSE IF( ITYPE.EQ.6 ) THEN
*
*              Singular values scaled by underflow.
*
               CALL DSCAL( SIZE, RTUNFL, WORK( PTRD ), 1 )
               CALL PDLAGGE( M, N, WORK( PTRD ), WORK( PTRA ), IA, JA,
     $                       DESCA, ISEED, SIZE, WORK( PTRWORK ),
     $                       LLWORK, INFO )
*
            END IF
*
         END IF
*
*        Set mapping between JOBTYPE and calling parameters of
*        PDGESVD, reset pointers to WORK array to save space.
*
         DO 80 JOBTYPE = 1, 4
*
            IF( JOBTYPE.EQ.1 ) THEN
               JOBU = 'V'
               JOBVT = 'V'
               PTRVT = PTRU + LDU*SIZEQ
               PTRUC = PTRVT + LDVT*NQ
               PTRWORK = PTRUC + LDU*SIZEQ
               LLWORK = LWORK - PTRWORK + 1
            ELSE IF( JOBTYPE.EQ.2 ) THEN
               JOBU = 'V'
               JOBVT = 'N'
            ELSE IF( JOBTYPE.EQ.3 ) THEN
               JOBU = 'N'
               JOBVT = 'V'
               PTRVTC = PTRUC
               PTRWORK = PTRVTC + LDVT*NQ
               LLWORK = LWORK - PTRWORK + 1
            ELSE IF( JOBTYPE.EQ.4 ) THEN
               JOBU = 'N'
               JOBVT = 'N'
               PTRWORK = PTRUC
               LLWORK = LWORK - PTRWORK + 1
            END IF
*
*           Duplicate matrix A.
*
            CALL PDLACPY( 'A', M, N, WORK( PTRA ), IA, JA, DESCA,
     $                    WORK( PTRAC ), IA, JA, DESCA )
*
*           Test SVD calculation with minimum amount of workspace
*           calculated earlier.
*
            IF( JOBTYPE.EQ.1 ) THEN
*
*              Run SVD.
*
               CALL SLBOOT
               CALL BLACS_BARRIER( CONTEXT, 'All' )
               CALL SLTIMER( 1 )
*
               CALL PDGESVD( JOBU, JOBVT, M, N, WORK( PTRAC ), IA, JA,
     $                       DESCA, WORK( PTRS ), WORK( PTRU ), IU, JU,
     $                       DESCU, WORK( PTRVT ), IVT, JVT, DESCVT,
     $                       WORK( PTRWORK ), WPDGESVD, INFO )
*
               CALL SLTIMER( 1 )
               CALL SLCOMBINE( CONTEXT, 'All', '>', 'W', 1, 1, WTIME )
               CALL SLCOMBINE( CONTEXT, 'All', '>', 'C', 1, 1, CTIME )
*
*              Check INFO. Different INFO for different processes mean
*              something went wrong.
*
               ITMP( 1 ) = INFO
               ITMP( 2 ) = INFO
*
               CALL IGAMN2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP, 1, 1,
     $                       1, -1, -1, 0 )
               CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP( 2 ),
     $                       1, 1, 1, -1, -1, 0 )
*
               IF( ITMP( 1 ).NE.ITMP( 2 ) ) THEN
                  IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                     WRITE( NOUT, FMT = * )
     $                  'Different processes return different INFO'
                     GO TO 120
                  END IF
               END IF
*
*              If INFO is  negative PXERBLA tells you. So the only thing
*              is to check for positive INFO -- detected heterogeneous
*              system.
*
               IF( INFO.EQ.( SIZE+1 ) ) THEN
                  HETERO = 'P'
                  SETHET = 1
               END IF
*
*              If INFO was fine do more exhaustive check.
*
               IF( INFO.EQ.ZERO ) THEN
*
                  DO 50 I = 1, SIZE
                     WORK( I+PTRWORK ) = WORK( I+PTRS-1 )
                     WORK( I+SIZE+PTRWORK ) = WORK( I+PTRS-1 )
   50             CONTINUE
*
                  CALL DGAMN2D( DESCA( CTXT_ ), 'a', ' ', SIZE, 1,
     $                          WORK( 1+PTRWORK ), SIZE, 1, 1, -1, -1,
     $                          0 )
                  CALL DGAMX2D( DESCA( CTXT_ ), 'a', ' ', SIZE, 1,
     $                          WORK( 1+SIZE+PTRWORK ), SIZE, 1, 1, -1,
     $                          -1, 0 )
*
                  DO 60 I = 1, SIZE
                     IF( ABS( WORK( I+PTRWORK )-WORK( SIZE+I+
     $                   PTRWORK ) ).GT.ZERO ) THEN
                        WRITE( NOUT, FMT = * )'I= ', I, ' MIN=',
     $                     WORK( I+PTRWORK ), ' MAX=',
     $                     WORK( SIZE+I+PTRWORK )
                        HETERO = 'T'
                        SETHET = 1
                        GO TO 70
                     END IF
*
   60             CONTINUE
   70             CONTINUE
*
               END IF
*
               IF( SETHET.NE.1 )
     $            HETERO = 'N'
*
*              Need to copy A again since AC was overwritten by PDGESVD.
*
               CALL PDLACPY( 'A', M, N, WORK( PTRA ), IA, JA, DESCA,
     $                       WORK( PTRAC ), IA, JA, DESCA )
*
*              PDSVDCHK overwrites U. So before the call to PDSVDCHK
*              U is copied to UC and a pointer to UC is passed to
*              PDSVDCHK.
*
               CALL PDLACPY( 'A', M, SIZE, WORK( PTRU ), IU, JU, DESCU,
     $                       WORK( PTRUC ), IU, JU, DESCU )
*
*              Run tests 1 - 4.
*
               CALL PDSVDCHK( M, N, WORK( PTRAC ), IA, JA, DESCA,
     $                        WORK( PTRUC ), IU, JU, DESCU, 
     $                        WORK( PTRVT ), IVT, JVT, DESCVT, 
     $                        WORK( PTRS ), THRESH, WORK( PTRWORK ), 
     $                        LLWORK, RESULT, CHK, MTM )
*
            ELSE
*
*              Once again test PDGESVD with min workspace.
*
               CALL PDGESVD( JOBU, JOBVT, M, N, WORK( PTRAC ), IA, JA,
     $                       DESCA, WORK( PTRSC ), WORK( PTRUC ), IU,
     $                       JU, DESCU, WORK( PTRVTC ), IVT, JVT, 
     $                       DESCVT, WORK( PTRWORK ), WPDGESVD, INFO )
*
               CALL PDSVDCMP( M, N, JOBTYPE, WORK( PTRS ),
     $                        WORK( PTRSC ), WORK( PTRU ),
     $                        WORK( PTRUC ), IU, JU, DESCU, 
     $                        WORK( PTRVT ), WORK( PTRVTC ), IVT, JVT,
     $                        DESCVT, THRESH, RESULT, DELTA,
     $                        WORK( PTRWORK ), LLWORK )
*
            END IF
*
   80    CONTINUE
*
         IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
            DO 90 I = 1, 9
               IF( RESULT( I ).EQ.1 ) THEN
                  PASS = 1
                  WRITE( NOUT, FMT = * )'Test I = ', I, 'has failed'
                  WRITE( NOUT, FMT = * )' '
               END IF
   90       CONTINUE
            IF( PASS.EQ.0 ) THEN
               WRITE( NOUT, FMT = 9999 )'Passed', WTIME( 1 ),
     $            CTIME( 1 ), M, N, NPROW, NPCOL, NB, ITYPE, CHK, MTM,
     $            DELTA, HETERO
            END IF
         END IF
  100 CONTINUE
      CALL BLACS_GRIDEXIT( CONTEXT )
  110 CONTINUE
*
 9999 FORMAT( A6, 2E10.3, 2I6, 2I4, I5, I6, 3F6.2, 4X, A1 )
  120 CONTINUE
*
*     End of PDSVDTST
*
      RETURN
      END