1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
|
*
*
SUBROUTINE PSGSEPTST( DESCA, UPLO, N, MATTYPE, IBTYPE, SUBTESTS,
$ THRESH, ORDER, ABSTOL, ISEED, A, COPYA, B,
$ COPYB, Z, LDA, WIN, WNEW, IFAIL, ICLUSTR,
$ GAP, IPREPAD, IPOSTPAD, WORK, LWORK, IWORK,
$ LIWORK, NOUT, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
CHARACTER SUBTESTS, UPLO
INTEGER IBTYPE, INFO, IPOSTPAD, IPREPAD, LDA, LIWORK,
$ LWORK, MATTYPE, N, NOUT, ORDER
REAL ABSTOL, THRESH
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), ICLUSTR( * ), IFAIL( * ),
$ ISEED( 4 ), IWORK( * )
REAL A( LDA, * ), B( LDA, * ), COPYA( LDA, * ),
$ COPYB( LDA, * ), GAP( * ), WIN( * ), WNEW( * ),
$ WORK( * ), Z( LDA, * )
* ..
*
* Purpose
* =======
*
* PSGSEPTST builds a random matrix A, and a well conditioned
* matrix B, runs PSSYGVX() to compute the eigenvalues
* and eigenvectors and then calls PSSYGVCHK to compute
* the residual.
*
* The random matrix built depends upon the following parameters:
* N, NB, ISEED, ORDER
*
* Arguments
* =========
*
* NP = the number of rows local to a given process.
* NQ = the number of columns local to a given process.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrices
*
* UPLO (global input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* Size of the matrix to be tested. (global size)
*
* MATTYPE (global input) INTEGER
* Matrix type
* Currently, the list of possible types is:
*
* (1) The zero matrix.
* (2) The identity matrix.
*
* (3) A diagonal matrix with evenly spaced entries
* 1, ..., ULP and random signs.
* (ULP = (first number larger than 1) - 1 )
* (4) A diagonal matrix with geometrically spaced entries
* 1, ..., ULP and random signs.
* (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
* and random signs.
*
* (6) Same as (4), but multiplied by SQRT( overflow threshold )
* (7) Same as (4), but multiplied by SQRT( underflow threshold )
*
* (8) A matrix of the form U' D U, where U is orthogonal and
* D has evenly spaced entries 1, ..., ULP with random signs
* on the diagonal.
*
* (9) A matrix of the form U' D U, where U is orthogonal and
* D has geometrically spaced entries 1, ..., ULP with random
* signs on the diagonal.
*
* (10) A matrix of the form U' D U, where U is orthogonal and
* D has "clustered" entries 1, ULP,..., ULP with random
* signs on the diagonal.
*
* (11) Same as (8), but multiplied by SQRT( overflow threshold )
* (12) Same as (8), but multiplied by SQRT( underflow threshold )
*
* (13) symmetric matrix with random entries chosen from (-1,1).
* (14) Same as (13), but multiplied by SQRT( overflow threshold )
* (15) Same as (13), but multiplied by SQRT( underflow threshold )
* (16) Same as (8), but diagonal elements are all positive.
* (17) Same as (9), but diagonal elements are all positive.
* (18) Same as (10), but diagonal elements are all positive.
* (19) Same as (16), but multiplied by SQRT( overflow threshold )
* (20) Same as (16), but multiplied by SQRT( underflow threshold )
* (21) A tridiagonal matrix that is a direct sum of smaller diagonally
* dominant submatrices. Each unreduced submatrix has geometrically
* spaced diagonal entries 1, ..., ULP.
* (22) A matrix of the form U' D U, where U is orthogonal and
* D has ceil(lgN) "clusters" at 0,1,2,...,ceil(lgN)-1. The
* size of the cluster at the value I is 2^I.
*
* IBTYPE (global input) INTEGER
* Specifies the problem type to be solved:
* = 1: sub( A )*x = (lambda)*sub( B )*x
* = 2: sub( A )*sub( B )*x = (lambda)*x
* = 3: sub( B )*sub( A )*x = (lambda)*x
*
*
* SUBTESTS (global input) CHARACTER*1
* 'Y' - Perform subset tests
* 'N' - Do not perform subset tests
*
* THRESH (global input) REAL
* A test will count as "failed" if the "error", computed as
* described below, exceeds THRESH. Note that the error
* is scaled to be O(1), so THRESH should be a reasonably
* small multiple of 1, e.g., 10 or 100. In particular,
* it should not depend on the precision (single vs. double)
* or the size of the matrix. It must be at least zero.
*
* ORDER (global input) INTEGER
* Number of reflectors used in test matrix creation.
* If ORDER is large, it will
* take more time to create the test matrices but they will
* be closer to random.
* ORDER .lt. N not implemented
*
* ABSTOL (global input) REAL
* The absolute tolerance for the eigenvalues. An
* eigenvalue is considered to be located if it has
* been determined to lie in an interval whose width
* is "abstol" or less. If "abstol" is less than or equal
* to zero, then ulp*|T| will be used, where |T| is
* the 1-norm of the matrix. If eigenvectors are
* desired later by inverse iteration ("PSSTEIN"),
* "abstol" MUST NOT be bigger than ulp*|T|.
*
* For the purposes of this test, ABSTOL=0.0 is fine.
* THis test does not test for high relative accuracy.
*
* ISEED (global input/output) INTEGER array, dimension (4)
* On entry, the seed of the random number generator; the array
* elements must be between 0 and 4095, and ISEED(4) must be
* odd.
* On exit, the seed is updated.
*
* A (local workspace) REAL array, dim (N*N)
* global dimension (N, N), local dimension (LDA, NQ)
* A is distributed in a block cyclic manner over both rows
* and columns. The actual location of a particular element
* in A is controlled by the values of NPROW, NPCOL, and NB.
* The test matrix, which is then modified by PSSYGVX
*
* COPYA (local workspace) REAL array, dim (N, N)
* COPYA is used to hold an identical copy of the array A
* identical in both form and content to A
*
* B (local workspace) REAL array, dim (N*N)
* global dimension (N, N), local dimension (LDA, NQ)
* A is distributed in a block cyclic manner over both rows
* and columns.
* The B test matrix, which is then modified by PSSYGVX
*
* COPYB (local workspace) REAL array, dim (N, N)
* COPYB is used to hold an identical copy of the array B
* identical in both form and content to B
*
* Z (local workspace) REAL array, dim (N*N)
* Z is distributed in the same manner as A
* Z is used as workspace by the test routines
* PSGSEPCHK
*
* W (local workspace) REAL array, dimension (N)
* On normal exit from PSSYGVX, the first M entries
* contain the selected eigenvalues in ascending order.
*
* IFAIL (global workspace) INTEGER array, dimension (N)
*
* WORK (local workspace) REAL array, dimension (LWORK)
*
* LWORK (local input) INTEGER
* The length of the array WORK. LWORK >= SIZETST as
* returned by PSLASIZEGSEP
*
* IWORK (local workspace) INTEGER array, dimension (LIWORK)
*
* LIWORK (local input) INTEGER
* The length of the array IWORK. LIWORK >= ISIZETST as
* returned by PSLASIZEGSEP
*
* NOUT (local input) INTEGER
* The unit number for output file. Only used on node 0.
* NOUT = 6, output to screen,
* NOUT = 0, output to stderr.
* NOUT = 13, output to file, divide thresh by 10.0
* NOUT = 14, output to file, divide thresh by 20.0
* (This hack allows us to test more stringently internally
* so that when errors on found on other computers they will
* be serious enough to warrant our attention.)
*
* INFO (global output) INTEGER
* -3 This process is not involved
* 0 Test succeeded (passed |AQ -QL| and |QT*Q - I| tests)
* 1 At least one test failed
* 2 Residual test were not performed, thresh <= 0.0
* 3 Test was skipped because of inadequate memory space
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO, ONE, TEN, HALF
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0,
$ HALF = 0.5E+0 )
REAL PADVAL
PARAMETER ( PADVAL = 19.25E+0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 22 )
* ..
*
* .. Local Scalars ..
LOGICAL WKNOWN
CHARACTER JOBZ, RANGE
CHARACTER*14 PASSED
INTEGER CONTEXT, I, IAM, IINFO, IL, IMODE, IN, INDD,
$ INDWORK, ISIZESUBTST, ISIZESYEVX, ISIZETST,
$ ITYPE, IU, J, LLWORK, LSYEVXSIZE, MAXSIZE,
$ MYCOL, MYROW, NB, NGEN, NLOC, NNODES, NP,
$ NPCOL, NPROW, NQ, RES, SIZECHK, SIZEMQRLEFT,
$ SIZEMQRRIGHT, SIZEQRF, SIZEQTQ, SIZESUBTST,
$ SIZESYEVX, SIZETMS, SIZETST, VALSIZE, VECSIZE
REAL ANINV, ANORM, COND, MAXQTQNRM, MAXTSTNRM, OVFL,
$ QTQNRM, RTOVFL, RTUNFL, TEMP1, TSTNRM, ULP,
$ ULPINV, UNFL, VL, VU
* ..
* .. Local Arrays ..
INTEGER ISEEDIN( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
DOUBLE PRECISION CTIME( 10 ), WTIME( 10 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC
REAL PSLAMCH, SLARAN
EXTERNAL LSAME, NUMROC, PSLAMCH, SLARAN
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, BLACS_PINFO, IGAMX2D, IGEBR2D,
$ IGEBS2D, PSCHEKPAD, PSELSET, PSFILLPAD,
$ PSGSEPSUBTST, PSLASET, PSLASIZEGSEP,
$ PSLASIZESYEVX, PSLATMS, PSMATGEN, SLABAD,
$ SLASRT, SLATMS, SLCOMBINE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX, MIN, MOD, REAL, SQRT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
$ 8, 8, 9, 9, 9, 9, 9, 10, 11 /
DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
$ 2, 3, 1, 1, 1, 2, 3, 1, 1 /
DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 4, 3, 1, 4, 4, 3, 0 /
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
INFO = 0
PASSED = 'PASSED '
CONTEXT = DESCA( CTXT_ )
NB = DESCA( NB_ )
*
CALL BLACS_PINFO( IAM, NNODES )
CALL BLACS_GRIDINFO( CONTEXT, NPROW, NPCOL, MYROW, MYCOL )
*
*
* Make sure that we have enough memory
*
*
CALL PSLASIZEGSEP( DESCA, IPREPAD, IPOSTPAD, SIZEMQRLEFT,
$ SIZEMQRRIGHT, SIZEQRF, SIZETMS, SIZEQTQ,
$ SIZECHK, SIZESYEVX, ISIZESYEVX, SIZESUBTST,
$ ISIZESUBTST, SIZETST, ISIZETST )
*
IF( LWORK.LT.SIZETST ) THEN
INFO = 3
END IF
*
CALL IGAMX2D( CONTEXT, 'a', ' ', 1, 1, INFO, 1, 1, 1, -1, -1, 0 )
*
IF( INFO.EQ.0 ) THEN
*
INDD = 1
INDWORK = INDD + N
LLWORK = LWORK - INDWORK + 1
*
ULP = PSLAMCH( CONTEXT, 'P' )
ULPINV = ONE / ULP
UNFL = PSLAMCH( CONTEXT, 'Safe min' )
OVFL = ONE / UNFL
CALL SLABAD( UNFL, OVFL )
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
ANINV = ONE / REAL( MAX( 1, N ) )
*
* This ensures that everyone starts out with the same seed.
*
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
CALL IGEBS2D( CONTEXT, 'a', ' ', 4, 1, ISEED, 4 )
ELSE
CALL IGEBR2D( CONTEXT, 'a', ' ', 4, 1, ISEED, 4, 0, 0 )
END IF
ISEEDIN( 1 ) = ISEED( 1 )
ISEEDIN( 2 ) = ISEED( 2 )
ISEEDIN( 3 ) = ISEED( 3 )
ISEEDIN( 4 ) = ISEED( 4 )
*
* Compute the matrix A
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random log symmetric, w/ eigenvalues
* =6 random (none)
* =7 random diagonal
* =8 random symmetric
* =9 positive definite
* =10 block diagonal with tridiagonal blocks
* =11 Geometrically sized clusters.
*
ITYPE = KTYPE( MATTYPE )
IMODE = KMODE( MATTYPE )
*
* Compute norm
*
GO TO ( 10, 20, 30 )KMAGN( MATTYPE )
*
10 CONTINUE
ANORM = ONE
GO TO 40
*
20 CONTINUE
ANORM = ( RTOVFL*ULP )*ANINV
GO TO 40
*
30 CONTINUE
ANORM = RTUNFL*N*ULPINV
GO TO 40
*
40 CONTINUE
IF( MATTYPE.LE.15 ) THEN
COND = ULPINV
ELSE
COND = ULPINV*ANINV / TEN
END IF
*
* Special Matrices
*
* Zero
*
*
IF( ITYPE.EQ.1 ) THEN
*
* Zero Matrix
*
DO 50 I = 1, N
WORK( INDD+I-1 ) = ZERO
50 CONTINUE
CALL PSLASET( 'All', N, N, ZERO, ZERO, COPYA, 1, 1, DESCA )
WKNOWN = .TRUE.
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity Matrix
*
DO 60 I = 1, N
WORK( INDD+I-1 ) = ONE
60 CONTINUE
CALL PSLASET( 'All', N, N, ZERO, ONE, COPYA, 1, 1, DESCA )
WKNOWN = .TRUE.
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL PSFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
$ SIZETMS, IPREPAD, IPOSTPAD, PADVAL+1.0E+0 )
*
CALL PSLATMS( N, N, 'S', ISEED, 'S', WORK( INDD ), IMODE,
$ COND, ANORM, 0, 0, 'N', COPYA, 1, 1, DESCA,
$ ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
$ IINFO )
WKNOWN = .TRUE.
*
CALL PSCHEKPAD( DESCA( CTXT_ ), 'PSLATMS1-WORK', SIZETMS, 1,
$ WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
$ PADVAL+1.0E+0 )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* symmetric, eigenvalues specified
*
CALL PSFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
$ SIZETMS, IPREPAD, IPOSTPAD, PADVAL+2.0E+0 )
*
CALL PSLATMS( N, N, 'S', ISEED, 'S', WORK( INDD ), IMODE,
$ COND, ANORM, N, N, 'N', COPYA, 1, 1, DESCA,
$ ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
$ IINFO )
*
CALL PSCHEKPAD( DESCA( CTXT_ ), 'PSLATMS2-WORK', SIZETMS, 1,
$ WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
$ PADVAL+2.0E+0 )
*
WKNOWN = .TRUE.
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* symmetric, random eigenvalues
*
NP = NUMROC( N, DESCA( MB_ ), MYROW, 0, NPROW )
NQ = NUMROC( N, DESCA( NB_ ), MYCOL, 0, NPCOL )
CALL PSMATGEN( DESCA( CTXT_ ), 'S', 'N', N, N, DESCA( MB_ ),
$ DESCA( NB_ ), COPYA, DESCA( LLD_ ),
$ DESCA( RSRC_ ), DESCA( CSRC_ ), ISEED( 1 ),
$ 0, NP, 0, NQ, MYROW, MYCOL, NPROW, NPCOL )
INFO = 0
WKNOWN = .FALSE.
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Positive definite, eigenvalues specified.
*
*
CALL PSFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
$ SIZETMS, IPREPAD, IPOSTPAD, PADVAL+3.0E+0 )
*
CALL PSLATMS( N, N, 'S', ISEED, 'S', WORK( INDD ), IMODE,
$ COND, ANORM, N, N, 'N', COPYA, 1, 1, DESCA,
$ ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
$ IINFO )
*
WKNOWN = .TRUE.
*
CALL PSCHEKPAD( DESCA( CTXT_ ), 'PSLATMS3-WORK', SIZETMS, 1,
$ WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
$ PADVAL+3.0E+0 )
*
ELSE IF( ITYPE.EQ.10 ) THEN
*
* Block diagonal matrix with each block being a positive
* definite tridiagonal submatrix.
*
CALL PSLASET( 'All', N, N, ZERO, ZERO, COPYA, 1, 1, DESCA )
NP = NUMROC( N, DESCA( MB_ ), 0, 0, NPROW )
NQ = NUMROC( N, DESCA( NB_ ), 0, 0, NPCOL )
NLOC = MIN( NP, NQ )
NGEN = 0
70 CONTINUE
*
IF( NGEN.LT.N ) THEN
IN = MIN( 1+INT( SLARAN( ISEED )*REAL( NLOC ) ), N-NGEN )
*
CALL SLATMS( IN, IN, 'S', ISEED, 'P', WORK( INDD ),
$ IMODE, COND, ANORM, 1, 1, 'N', A, LDA,
$ WORK( INDWORK ), IINFO )
*
DO 80 I = 2, IN
TEMP1 = ABS( A( I-1, I ) ) /
$ SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
IF( TEMP1.GT.HALF ) THEN
A( I-1, I ) = HALF*SQRT( ABS( A( I-1, I-1 )*A( I,
$ I ) ) )
A( I, I-1 ) = A( I-1, I )
END IF
80 CONTINUE
CALL PSELSET( COPYA, NGEN+1, NGEN+1, DESCA, A( 1, 1 ) )
DO 90 I = 2, IN
CALL PSELSET( COPYA, NGEN+I, NGEN+I, DESCA,
$ A( I, I ) )
CALL PSELSET( COPYA, NGEN+I-1, NGEN+I, DESCA,
$ A( I-1, I ) )
CALL PSELSET( COPYA, NGEN+I, NGEN+I-1, DESCA,
$ A( I, I-1 ) )
90 CONTINUE
NGEN = NGEN + IN
GO TO 70
END IF
WKNOWN = .FALSE.
*
ELSE IF( ITYPE.EQ.11 ) THEN
*
* Geometrically sized clusters. Eigenvalues: 0,1,1,2,2,2,2, ...
*
NGEN = 0
J = 1
TEMP1 = ZERO
100 CONTINUE
IF( NGEN.LT.N ) THEN
IN = MIN( J, N-NGEN )
DO 110 I = 0, IN - 1
WORK( INDD+NGEN+I ) = TEMP1
110 CONTINUE
TEMP1 = TEMP1 + ONE
J = 2*J
NGEN = NGEN + IN
GO TO 100
END IF
*
*
CALL PSFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
$ SIZETMS, IPREPAD, IPOSTPAD, PADVAL+4.0E+0 )
*
CALL PSLATMS( N, N, 'S', ISEED, 'S', WORK( INDD ), IMODE,
$ COND, ANORM, 0, 0, 'N', COPYA, 1, 1, DESCA,
$ ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
$ IINFO )
*
CALL PSCHEKPAD( DESCA( CTXT_ ), 'PSLATMS4-WORK', SIZETMS, 1,
$ WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
$ PADVAL+4.0E+0 )
*
*
* WKNOWN ... NOT SET, GUESS A DEFAULT
*
WKNOWN = .TRUE.
ELSE
IINFO = 1
END IF
*
IF( WKNOWN )
$ CALL SLASRT( 'I', N, WORK( INDD ), IINFO )
*
* Create the B matrix
*
CALL PSFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
$ SIZETMS, IPREPAD, IPOSTPAD, PADVAL+3.3E+0 )
*
ANORM = ONE
*
* Update ISEED so that {SLAGSY creates a different Q
*
ISEED( 4 ) = MOD( ISEED( 4 )+257, 4096 )
ISEED( 3 ) = MOD( ISEED( 3 )+192, 4096 )
ISEED( 2 ) = MOD( ISEED( 2 )+35, 4096 )
ISEED( 1 ) = MOD( ISEED( 1 )+128, 4096 )
CALL PSLATMS( N, N, 'S', ISEED, 'P', WORK( INDD ), 3, TEN,
$ ANORM, N, N, 'N', COPYB, 1, 1, DESCA, ORDER,
$ WORK( INDWORK+IPREPAD ), SIZETMS, IINFO )
*
CALL PSCHEKPAD( DESCA( CTXT_ ), 'PSLATMS5-WORK', SIZETMS, 1,
$ WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
$ PADVAL+3.3E+0 )
*
*
* These values aren't actually used, but they make ftncheck happy.
*
IL = -1
IU = -2
VL = ONE
VU = -ONE
*
CALL PSLASIZESYEVX( WKNOWN, 'A', N, DESCA, VL, VU, IL, IU,
$ ISEED, WORK( INDD ), MAXSIZE, VECSIZE,
$ VALSIZE )
*
LSYEVXSIZE = MIN( MAXSIZE, LWORK )
WKNOWN = .FALSE.
*
CALL PSGSEPSUBTST( WKNOWN, IBTYPE, 'v', 'a', UPLO, N, VL, VU,
$ IL, IU, THRESH, ABSTOL, A, COPYA, B, COPYB,
$ Z, 1, 1, DESCA, WORK( INDD ), WIN, IFAIL,
$ ICLUSTR, GAP, IPREPAD, IPOSTPAD,
$ WORK( INDWORK ), LLWORK, LSYEVXSIZE, IWORK,
$ ISIZESYEVX, RES, TSTNRM, QTQNRM, NOUT )
*
*
*
MAXTSTNRM = TSTNRM
MAXQTQNRM = QTQNRM
*
IF( THRESH.LE.ZERO ) THEN
PASSED = 'SKIPPED '
INFO = 2
ELSE IF( RES.NE.0 ) THEN
PASSED = 'FAILED '
INFO = 1
END IF
END IF
*
IF( THRESH.GT.ZERO .AND. LSAME( SUBTESTS, 'Y' ) ) THEN
*
* Subtest 1: JOBZ = 'V', RANGE = 'A', minimum memory
*
IF( INFO.EQ.0 ) THEN
*
JOBZ = 'V'
RANGE = 'A'
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VECSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
PASSED = 'FAILED stest 1'
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
INFO = 1
END IF
END IF
*
* Subtest 2: JOBZ = 'V', RANGE = 'A', random memory
*
IF( INFO.EQ.0 ) THEN
JOBZ = 'V'
RANGE = 'A'
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VECSIZE + INT( SLARAN( ISEED )*
$ REAL( MAXSIZE-VECSIZE ) )
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
PASSED = 'FAILED stest 2'
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
INFO = 1
END IF
END IF
*
* Subtest 3: JOBZ = 'N', RANGE = 'A', minimum memory
*
IF( INFO.EQ.0 ) THEN
*
JOBZ = 'N'
RANGE = 'A'
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VALSIZE
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 3'
INFO = 1
END IF
END IF
*
* Subtest 4: JOBZ = 'N', RANGE = 'I', minimum memory
*
IF( INFO.EQ.0 ) THEN
*
IL = -1
IU = -1
JOBZ = 'N'
RANGE = 'I'
*
* We use PSLASIZESYEVX to choose IL and IU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VALSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 4'
INFO = 1
END IF
END IF
*
* Subtest 5: JOBZ = 'V', RANGE = 'I', maximum memory
*
IF( INFO.EQ.0 ) THEN
*
IL = -1
IU = -1
JOBZ = 'V'
RANGE = 'I'
*
* We use PSLASIZESYEVX to choose IL and IU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = MAXSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 5'
INFO = 1
END IF
END IF
*
* Subtest 6: JOBZ = 'V', RANGE = 'I', minimum memory
*
IF( INFO.EQ.0 ) THEN
IL = -1
IU = -1
JOBZ = 'V'
RANGE = 'I'
*
* We use PSLASIZESYEVX to choose IL and IU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VECSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 6'
INFO = 1
END IF
END IF
*
* Subtest 7: JOBZ = 'V', RANGE = 'I', random memory
*
IF( INFO.EQ.0 ) THEN
IL = -1
IU = -1
JOBZ = 'V'
RANGE = 'I'
*
* We use PSLASIZESYEVX to choose IL and IU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
LSYEVXSIZE = VECSIZE + INT( SLARAN( ISEED )*
$ REAL( MAXSIZE-VECSIZE ) )
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 7'
INFO = 1
END IF
END IF
*
* Subtest 8: JOBZ = 'N', RANGE = 'V', minimum memory
*
IF( INFO.EQ.0 ) THEN
VL = ONE
VU = -ONE
JOBZ = 'N'
RANGE = 'V'
*
* We use PSLASIZESYEVX to choose VL and VU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VALSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 8'
INFO = 1
END IF
END IF
*
* Subtest 9: JOBZ = 'V', RANGE = 'V', maximum memory
*
IF( INFO.EQ.0 ) THEN
VL = ONE
VU = -ONE
JOBZ = 'V'
RANGE = 'V'
*
* We use PSLASIZESYEVX to choose VL and VU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = MAXSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest 9'
INFO = 1
END IF
END IF
*
* Subtest 10: JOBZ = 'V', RANGE = 'V',
* minimum memory required for eigenvectors
*
IF( INFO.EQ.0 ) THEN
VL = ONE
VU = -ONE
JOBZ = 'V'
RANGE = 'V'
*
* We use PSLASIZESYEVX to choose VL and VU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VECSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest10'
INFO = 1
END IF
END IF
*
* Subtest 11: JOBZ = 'V', RANGE = 'V',
* random memory (enough for all eigenvectors
* but not enough to guarantee orthogonality
*
IF( INFO.EQ.0 ) THEN
VL = ONE
VU = -ONE
JOBZ = 'V'
RANGE = 'V'
*
* We use PSLASIZESYEVX to choose VL and VU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VECSIZE + INT( SLARAN( ISEED )*
$ REAL( MAXSIZE-VECSIZE ) )
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest11'
INFO = 1
END IF
END IF
*
* Subtest 12: JOBZ = 'V', RANGE = 'V',
* miniimum memory required for eigenvalues only
*
IF( INFO.EQ.0 ) THEN
VL = ONE
VU = -ONE
JOBZ = 'V'
RANGE = 'V'
*
* We use PSLASIZESYEVX to choose VL and VU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VALSIZE
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest12'
INFO = 1
END IF
END IF
*
* Subtest 13: JOBZ = 'V', RANGE = 'V',
* random memory (more than minimum required
* for eigenvalues, less than required for vectors)
*
IF( INFO.EQ.0 ) THEN
VL = ONE
VU = -ONE
JOBZ = 'V'
RANGE = 'V'
*
* We use PSLASIZESYEVX to choose VL and VU for us.
*
CALL PSLASIZESYEVX( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
*
LSYEVXSIZE = VALSIZE + INT( SLARAN( ISEED )*
$ REAL( VECSIZE-VALSIZE ) )
*
CALL PSGSEPSUBTST( .TRUE., IBTYPE, JOBZ, RANGE, UPLO, N, VL,
$ VU, IL, IU, THRESH, ABSTOL, A, COPYA, B,
$ COPYB, Z, 1, 1, DESCA, WIN( 1+IPREPAD ),
$ WNEW, IFAIL, ICLUSTR, GAP, IPREPAD,
$ IPOSTPAD, WORK( INDWORK ), LLWORK,
$ LSYEVXSIZE, IWORK, ISIZESYEVX, RES,
$ TSTNRM, QTQNRM, NOUT )
*
IF( RES.NE.0 ) THEN
MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
PASSED = 'FAILED stest13'
INFO = 1
END IF
END IF
END IF
*
*
*
CALL IGAMX2D( CONTEXT, 'All', ' ', 1, 1, INFO, 1, -1, -1, -1, -1,
$ -1 )
*
IF( INFO.EQ.1 ) THEN
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = 9994 )'C '
WRITE( NOUT, FMT = 9993 )ISEEDIN( 1 )
WRITE( NOUT, FMT = 9992 )ISEEDIN( 2 )
WRITE( NOUT, FMT = 9991 )ISEEDIN( 3 )
WRITE( NOUT, FMT = 9990 )ISEEDIN( 4 )
IF( LSAME( UPLO, 'L' ) ) THEN
WRITE( NOUT, FMT = 9994 )' UPLO= ''L'' '
ELSE
WRITE( NOUT, FMT = 9994 )' UPLO= ''U'' '
END IF
IF( LSAME( SUBTESTS, 'Y' ) ) THEN
WRITE( NOUT, FMT = 9994 )' SUBTESTS= ''Y'' '
ELSE
WRITE( NOUT, FMT = 9994 )' SUBTESTS= ''N'' '
END IF
WRITE( NOUT, FMT = 9989 )N
WRITE( NOUT, FMT = 9988 )NPROW
WRITE( NOUT, FMT = 9987 )NPCOL
WRITE( NOUT, FMT = 9986 )NB
WRITE( NOUT, FMT = 9985 )MATTYPE
WRITE( NOUT, FMT = 9984 )IBTYPE
WRITE( NOUT, FMT = 9982 )ABSTOL
WRITE( NOUT, FMT = 9981 )THRESH
WRITE( NOUT, FMT = 9994 )'C '
END IF
END IF
*
CALL SLCOMBINE( CONTEXT, 'All', '>', 'W', 6, 1, WTIME )
CALL SLCOMBINE( CONTEXT, 'All', '>', 'C', 6, 1, CTIME )
IF( IAM.EQ.0 ) THEN
IF( INFO.EQ.0 .OR. INFO.EQ.1 ) THEN
IF( WTIME( 1 ).GE.0.0 ) THEN
WRITE( NOUT, FMT = 9999 )N, NB, NPROW, NPCOL, MATTYPE,
$ IBTYPE, SUBTESTS, WTIME( 1 ), CTIME( 1 ), MAXTSTNRM,
$ PASSED
ELSE
WRITE( NOUT, FMT = 9998 )N, NB, NPROW, NPCOL, MATTYPE,
$ IBTYPE, SUBTESTS, CTIME( 1 ), MAXTSTNRM, PASSED
END IF
ELSE IF( INFO.EQ.2 ) THEN
IF( WTIME( 1 ).GE.0.0 ) THEN
WRITE( NOUT, FMT = 9997 )N, NB, NPROW, NPCOL, MATTYPE,
$ IBTYPE, SUBTESTS, WTIME( 1 ), CTIME( 1 )
ELSE
WRITE( NOUT, FMT = 9996 )N, NB, NPROW, NPCOL, MATTYPE,
$ IBTYPE, SUBTESTS, CTIME( 1 )
END IF
ELSE IF( INFO.EQ.3 ) THEN
WRITE( NOUT, FMT = 9995 )N, NB, NPROW, NPCOL, MATTYPE,
$ IBTYPE, SUBTESTS
END IF
END IF
*
120 CONTINUE
*
RETURN
9999 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, I3, 4X, A1,
$ 1X, F8.2, 1X, F8.2, 1X, G9.2, 1X, A14 )
9998 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, I3, 4X, A1,
$ 1X, 8X, 1X, F8.2, 1X, G9.2, A14 )
9997 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, I3, 4X, A1,
$ 1X, F8.2, 1X, F8.2, 11X, 'Bypassed' )
9996 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, I3, 4X, A1,
$ 1X, 8X, 1X, F8.2, 11X, 'Bypassed' )
9995 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, I3, 4X, A1,
$ 22X, 'Bad MEMORY parameters' )
9994 FORMAT( A )
9993 FORMAT( ' ISEED( 1 ) =', I8 )
9992 FORMAT( ' ISEED( 2 ) =', I8 )
9991 FORMAT( ' ISEED( 3 ) =', I8 )
9990 FORMAT( ' ISEED( 4 ) =', I8 )
9989 FORMAT( ' N=', I8 )
9988 FORMAT( ' NPROW=', I8 )
9987 FORMAT( ' NPCOL=', I8 )
9986 FORMAT( ' NB=', I8 )
9985 FORMAT( ' MATTYPE=', I8 )
9984 FORMAT( ' IBTYPE=', I8 )
9983 FORMAT( ' SUBTESTS=', A1 )
9982 FORMAT( ' ABSTOL=', D16.6 )
9981 FORMAT( ' THRESH=', D16.6 )
9980 FORMAT( ' Increase TOTMEM in PSGSEPDRIVER' )
*
* End of PSGSEPTST
*
END
|