1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
SUBROUTINE PSLAGGE( M, N, D, A, IA, JA, DESCA, ISEED, ORDER, WORK,
$ LWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IA, INFO, JA, LWORK, M, N, ORDER
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), ISEED( 4 )
REAL A( * ), D( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSLAGGE generates a real symmetric matrix A, by pre- and post-
* multiplying a real diagonal matrix D with a random orthogonal
* matrices: A = U*D*VT.
*
* This is just a quick implementation which will be replaced in the
* future. The random matrix A1(m,n) is generated and random left
* orthogonal matrix U(m,m) is obtained by running QR on A1:
* A1(m,n) = U(m,m)*R,
* where U(m,m) is a product of min(m,n) Householder rotations.
* Afterwards the space of A1 is reused for a second random matrix
* A2(m,n), which is used to obtain the right orthogonal matrix VT(n,n)
* by running LQ on A2:
* A2(m,n) = L*VT(n,n).
* This requires vastly more computation than necessary, but not
* significantly more communication than is used in the rest of this
* routine, and hence is not that much slower than an efficient
* solution.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* Number of rows of the matrix A. M >= 0.
*
* N (global input) INTEGER
* Number of columns of matrix A. N >= 0.
*
* D (local input) REAL array, dimension (N)
* The diagonal elements of the diagonal matrix D.
*
* A (local output) REAL array
* Global dimension (M, N), local dimension (MP, NQ)
*
* IA (global input) INTEGER
* The global row index of the submatrix of the distributed
* matrix A to operate on.
*
* JA (global input) INTEGER
* The global column index of the submatrix of the distributed
* matrix A to operate on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrix A.
*
* ISEED (global input/output) INTEGER array, dimension (4)
* On entry, the seed of the random number generator; the array
* elements must be between 0 and 4095, and ISEED(4) must be
* odd. On exit, the seed is updated and will remain identical
* on all processes in the context.
*
* ORDER (global input) INTEGER
* Number of reflectors in the matrix Q
* At present, ORDER .NE. N is not supported
*
* WORK (local workspace) REAL array, dimension (LWORK)
*
* LWORK (local input) INTEGER dimension of WORK
* LWORK >= MAX( QR_WORK, LQ_WORK )
* QR_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU1 ) +
* MAX( SIZEMQRLEFT, SIZEQRF)
* LQ_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU2) +
* MAX( SIZEMLQRIGHT, SIZEQRF )
* Where:
* LDAA = DESCA( LLD_ )
* MB_A = DESCA( MB_ )
* NB_A = DESCA( NB_ )
* RSRC_A = DESCA( RSRC_ )
* CSRC_A = DESCA( CSRC_ )
* LCM = ILCM( NPROW, NPCOL )
* LCMQ = LCM / NPCOL
* IROFFA = MOD( IA-1, MB_A )
* ICOFFA = MOD( JA-1, NB_A )
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW )
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
* MP = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW )
* NQ = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL )
* DTAU1 = NUMROC( JA + SIZE- 1, NB_A, MYCOL, IACOL, NPROW )
* DTAU2 = NUMROC( IA + SIZE- 1, MB_A, MYROW, IAROW, NPROW )
* SIZEMQRLEFT = MAX( (MB_A*(MB_A-1))/2, ( MP + NQ ) * MB_A )
* + ( MP + NB_A ) * NB_A
* SIZEMLQRIGHT = MAX( (MB_A*(MB_A-1))/2, (MP + NQ)*MB_A ) +
* MB_A * MB_A
* SIZEQRF = NB_A*NP + MB_A*NQ + NB_A*NB_A
*
* INFO (local output) INTEGER
*
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* ======================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER CSRC_A, DTAU1, DTAU2, I, IACOL, IAROW, ICOFFA,
$ IROFFA, LCM, LCMQ, LDAA, LQ_WORK, LWMIN, MB_A,
$ MP, MYCOL, MYROW, NB_A, NPCOL, NPROW, NQ,
$ PTR2AA, PTR2TAU, PTR2WORK, QR_WORK, RSRC_A,
$ SIZE, SIZELQF, SIZEMLQRIGHT, SIZEMQRLEFT,
$ SIZEQRF
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, PSELSET, PSGELQF,
$ PSGEQRF, PSLASET, PSMATGEN, PSORMLQ, PSORMQR,
$ PXERBLA
* ..
* .. External Functions ..
INTEGER ILCM, INDXG2P, NUMROC
EXTERNAL ILCM, INDXG2P, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*DLEN_*DTYPE_*M_*N_.LT.0 )RETURN
*
* Initialize grid information.
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
* Check LWORK.
*
INFO = 0
SIZE = MIN( M, N )
IF( NPROW.EQ.-1 ) THEN
INFO = -607
ELSE
CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 8, INFO )
END IF
* Calculation of a minimum workspace.
LDAA = DESCA( LLD_ )
MB_A = DESCA( MB_ )
NB_A = DESCA( NB_ )
RSRC_A = DESCA( RSRC_ )
CSRC_A = DESCA( CSRC_ )
LCM = ILCM( NPROW, NPCOL )
LCMQ = LCM / NPCOL
IROFFA = MOD( IA-1, MB_A )
ICOFFA = MOD( JA-1, NB_A )
IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW )
IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
DTAU1 = NUMROC( JA+SIZE-1, NB_A, MYCOL, IACOL, NPCOL )
DTAU2 = NUMROC( IA+SIZE-1, MB_A, MYROW, IAROW, NPROW )
MP = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL )
*
SIZEMQRLEFT = MAX( ( MB_A*( MB_A-1 ) ) / 2, ( MP+NQ )*MB_A ) +
$ ( MP+NB_A )*NB_A
SIZEMLQRIGHT = MAX( ( MB_A*( MB_A-1 ) ) / 2, ( MP+NQ )*MB_A ) +
$ MB_A*MB_A
SIZEQRF = NB_A*MP + MB_A*NQ + NB_A*NB_A + 100
SIZELQF = NB_A*( MP+NQ+NB_A ) + 100
*
QR_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU1 ) +
$ MAX( SIZEMQRLEFT, SIZEQRF )
LQ_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU2 ) +
$ MAX( SIZEMLQRIGHT, SIZELQF )
LWMIN = MAX( QR_WORK, LQ_WORK )
WORK( 1 ) = LWMIN
IF( LWORK.EQ.-1 )
$ GO TO 20
*
* Test the input arguments.
*
IF( INFO.EQ.0 ) THEN
IF( SIZE.NE.ORDER ) THEN
INFO = -9
ELSE IF( LWORK.LT.LWMIN ) THEN
INFO = -11
END IF
END IF
IF( INFO.LT.0 ) THEN
CALL PXERBLA( DESCA( CTXT_ ), 'PSLAGGE', -INFO )
RETURN
END IF
*
* Build a diagonal matrix A with the eigenvalues specified in D.
*
CALL PSLASET( 'Full', M, N, ZERO, ZERO, A, IA, JA, DESCA )
DO 10 I = 1, SIZE
CALL PSELSET( A, I, I, DESCA, D( I ) )
10 CONTINUE
*
* Local dimension of array TAU in tis case is LOCc(JA+MIN(M,N)-1).
*
PTR2AA = 2
PTR2TAU = PTR2AA + LDAA*MAX( 1, NQ ) + 100
PTR2WORK = PTR2TAU + MAX( 1, DTAU1 ) + 100
*
CALL PSLASET( 'All', M, N, ZERO, ZERO, WORK( PTR2AA ), IA, JA,
$ DESCA )
*
* Build a random matrix AA1.
*
CALL PSMATGEN( DESCA( CTXT_ ), 'N', 'N', M, N, DESCA( MB_ ),
$ DESCA( NB_ ), WORK( PTR2AA ), DESCA( LLD_ ),
$ DESCA( RSRC_ ), DESCA( CSRC_ ), ISEED( 1 ), 0, MP,
$ 0, NQ, MYROW, MYCOL, NPROW, NPCOL )
*
* Produce QR decomposition AA1 -> U*R.
*
CALL PSGEQRF( M, N, WORK( PTR2AA ), IA, JA, DESCA,
$ WORK( PTR2TAU ), WORK( PTR2WORK ), SIZEQRF, INFO )
*
* A = U*A.
*
CALL PSORMQR( 'L', 'N', M, N, SIZE, WORK( PTR2AA ), IA, JA, DESCA,
$ WORK( PTR2TAU ), A, IA, JA, DESCA, WORK( PTR2WORK ),
$ SIZEMQRLEFT, INFO )
*
* Reinitialize pointer to WORK array. Dimension of array TAU in
* this case is LOCr(IA+MIN(M,N)-1).
*
PTR2WORK = PTR2TAU + MAX( 1, DTAU2 ) + 100
*
* Use the same workspace to generate a random matrix AA2.
*
CALL PSMATGEN( DESCA( CTXT_ ), 'N', 'N', M, N, DESCA( MB_ ),
$ DESCA( NB_ ), WORK( PTR2AA ), DESCA( LLD_ ),
$ DESCA( RSRC_ ), DESCA( CSRC_ ), ISEED( 2 ), 0, MP,
$ 0, NQ, MYROW, MYCOL, NPROW, NPCOL )
*
* Produce LQ decomposition of random matrix AA2 -> L*VT.
*
CALL PSGELQF( M, N, WORK( PTR2AA ), IA, JA, DESCA,
$ WORK( PTR2TAU ), WORK( PTR2WORK ), SIZELQF, INFO )
*
* Calculate A = A*VT.
*
CALL PSORMLQ( 'R', 'N', M, N, SIZE, WORK( PTR2AA ), IA, JA, DESCA,
$ WORK( PTR2TAU ), A, IA, JA, DESCA, WORK( PTR2WORK ),
$ SIZEMLQRIGHT, INFO )
*
* End of PSLAGGE
*
20 CONTINUE
RETURN
END
|