File: pslagge.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (322 lines) | stat: -rw-r--r-- 12,787 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
      SUBROUTINE PSLAGGE( M, N, D, A, IA, JA, DESCA, ISEED, ORDER, WORK,
     $                    LWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997         
*
*     .. Scalar Arguments ..
      INTEGER            IA, INFO, JA, LWORK, M, N, ORDER
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), ISEED( 4 )
      REAL               A( * ), D( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAGGE generates a real symmetric matrix A, by pre- and post-
*  multiplying a real diagonal matrix D with a random orthogonal
*  matrices:  A = U*D*VT.
*
*  This is just a quick implementation which will be replaced in the
*  future. The random matrix A1(m,n) is generated and random left
*  orthogonal matrix U(m,m) is obtained  by running QR on A1:
*     A1(m,n) = U(m,m)*R,
*  where U(m,m) is a product of min(m,n) Householder rotations.
*  Afterwards the space of A1 is reused for a second random matrix
*  A2(m,n), which is used to obtain the right orthogonal matrix VT(n,n)
*  by running LQ on A2:
*     A2(m,n) = L*VT(n,n).
*  This requires vastly more computation than necessary, but not 
*  significantly more communication than is used in the rest of this 
*  routine, and hence is not that much slower than an efficient 
*  solution.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*           Number of rows of the matrix A. M >= 0.
*
*  N       (global input) INTEGER
*          Number  of columns of matrix A.  N >= 0.
*
*  D       (local input) REAL             array, dimension (N)
*          The diagonal elements of the diagonal matrix D.
*
*  A       (local output) REAL             array
*          Global dimension (M, N), local dimension (MP, NQ)
*
*  IA      (global input) INTEGER
*          The global row index of the submatrix of the distributed
*          matrix A to operate on.
*
*  JA      (global input) INTEGER
*          The global column index of the submatrix of the distributed
*          matrix A to operate on.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix A.
*
*  ISEED   (global input/output) INTEGER array, dimension (4)
*          On entry, the seed of the random number generator; the array
*          elements must be between 0 and 4095, and ISEED(4) must be
*          odd. On exit, the seed is updated and will remain identical
*          on all processes in the context.
*
*  ORDER   (global input) INTEGER
*          Number of reflectors in the matrix Q
*          At present, ORDER .NE. N is not supported
*
*  WORK    (local workspace) REAL             array, dimension (LWORK)
*
*  LWORK   (local input) INTEGER dimension of WORK
*          LWORK >= MAX( QR_WORK, LQ_WORK )
*          QR_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU1 ) +
*                    MAX( SIZEMQRLEFT, SIZEQRF)
*          LQ_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU2) +
*                    MAX( SIZEMLQRIGHT, SIZEQRF )
*          Where:
*          LDAA = DESCA( LLD_ )
*          MB_A = DESCA( MB_ )
*          NB_A = DESCA( NB_ )
*          RSRC_A = DESCA( RSRC_ )
*          CSRC_A = DESCA( CSRC_ )
*          LCM = ILCM( NPROW, NPCOL )
*          LCMQ = LCM / NPCOL
*          IROFFA = MOD( IA-1, MB_A )
*          ICOFFA = MOD( JA-1, NB_A )
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW )
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
*          MP = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW )
*          NQ = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL )
*          DTAU1 = NUMROC( JA + SIZE- 1, NB_A, MYCOL, IACOL, NPROW )
*          DTAU2 = NUMROC( IA + SIZE- 1, MB_A, MYROW, IAROW, NPROW )
*          SIZEMQRLEFT = MAX( (MB_A*(MB_A-1))/2, ( MP + NQ ) * MB_A )
*               + ( MP + NB_A ) * NB_A
*          SIZEMLQRIGHT =  MAX( (MB_A*(MB_A-1))/2, (MP + NQ)*MB_A ) +
*                     MB_A * MB_A
*          SIZEQRF = NB_A*NP + MB_A*NQ + NB_A*NB_A
*
*  INFO    (local output) INTEGER
*
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
* ======================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CSRC_A, DTAU1, DTAU2, I, IACOL, IAROW, ICOFFA,
     $                   IROFFA, LCM, LCMQ, LDAA, LQ_WORK, LWMIN, MB_A,
     $                   MP, MYCOL, MYROW, NB_A, NPCOL, NPROW, NQ,
     $                   PTR2AA, PTR2TAU, PTR2WORK, QR_WORK, RSRC_A,
     $                   SIZE, SIZELQF, SIZEMLQRIGHT, SIZEMQRLEFT,
     $                   SIZEQRF
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PSELSET, PSGELQF,
     $                   PSGEQRF, PSLASET, PSMATGEN, PSORMLQ, PSORMQR,
     $                   PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILCM, INDXG2P, NUMROC
      EXTERNAL           ILCM, INDXG2P, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*     This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*DLEN_*DTYPE_*M_*N_.LT.0 )RETURN
*
*     Initialize grid information.
*
      CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
*     Check LWORK.
*
      INFO = 0
      SIZE = MIN( M, N )
      IF( NPROW.EQ.-1 ) THEN
         INFO = -607
      ELSE
         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 8, INFO )
      END IF
*     Calculation of a minimum workspace.
      LDAA = DESCA( LLD_ )
      MB_A = DESCA( MB_ )
      NB_A = DESCA( NB_ )
      RSRC_A = DESCA( RSRC_ )
      CSRC_A = DESCA( CSRC_ )
      LCM = ILCM( NPROW, NPCOL )
      LCMQ = LCM / NPCOL
      IROFFA = MOD( IA-1, MB_A )
      ICOFFA = MOD( JA-1, NB_A )
      IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW )
      IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL )
      DTAU1 = NUMROC( JA+SIZE-1, NB_A, MYCOL, IACOL, NPCOL )
      DTAU2 = NUMROC( IA+SIZE-1, MB_A, MYROW, IAROW, NPROW )
      MP = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL )
*
      SIZEMQRLEFT = MAX( ( MB_A*( MB_A-1 ) ) / 2, ( MP+NQ )*MB_A ) +
     $              ( MP+NB_A )*NB_A
      SIZEMLQRIGHT = MAX( ( MB_A*( MB_A-1 ) ) / 2, ( MP+NQ )*MB_A ) +
     $               MB_A*MB_A
      SIZEQRF = NB_A*MP + MB_A*NQ + NB_A*NB_A + 100
      SIZELQF = NB_A*( MP+NQ+NB_A ) + 100
*
      QR_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU1 ) +
     $          MAX( SIZEMQRLEFT, SIZEQRF )
      LQ_WORK = LDAA*MAX( 1, NQ ) + 200 + MAX( 1, DTAU2 ) +
     $          MAX( SIZEMLQRIGHT, SIZELQF )
      LWMIN = MAX( QR_WORK, LQ_WORK )
      WORK( 1 ) = LWMIN
      IF( LWORK.EQ.-1 )
     $   GO TO 20
*
*     Test the input arguments.
*
      IF( INFO.EQ.0 ) THEN
         IF( SIZE.NE.ORDER ) THEN
            INFO = -9
         ELSE IF( LWORK.LT.LWMIN ) THEN
            INFO = -11
         END IF
      END IF
      IF( INFO.LT.0 ) THEN
         CALL PXERBLA( DESCA( CTXT_ ), 'PSLAGGE', -INFO )
         RETURN
      END IF
*
*     Build a diagonal matrix A with the eigenvalues specified in D.
*
      CALL PSLASET( 'Full', M, N, ZERO, ZERO, A, IA, JA, DESCA )
      DO 10 I = 1, SIZE
         CALL PSELSET( A, I, I, DESCA, D( I ) )
   10 CONTINUE
*
*     Local dimension of array TAU in tis case is LOCc(JA+MIN(M,N)-1).
*
      PTR2AA = 2
      PTR2TAU = PTR2AA + LDAA*MAX( 1, NQ ) + 100
      PTR2WORK = PTR2TAU + MAX( 1, DTAU1 ) + 100
*
      CALL PSLASET( 'All', M, N, ZERO, ZERO, WORK( PTR2AA ), IA, JA,
     $              DESCA )
*
*     Build a random matrix AA1.
*
      CALL PSMATGEN( DESCA( CTXT_ ), 'N', 'N', M, N, DESCA( MB_ ),
     $               DESCA( NB_ ), WORK( PTR2AA ), DESCA( LLD_ ),
     $               DESCA( RSRC_ ), DESCA( CSRC_ ), ISEED( 1 ), 0, MP,
     $               0, NQ, MYROW, MYCOL, NPROW, NPCOL )
*
*     Produce QR decomposition AA1 -> U*R.
*
      CALL PSGEQRF( M, N, WORK( PTR2AA ), IA, JA, DESCA,
     $              WORK( PTR2TAU ), WORK( PTR2WORK ), SIZEQRF, INFO )
*
*     A = U*A.
*
      CALL PSORMQR( 'L', 'N', M, N, SIZE, WORK( PTR2AA ), IA, JA, DESCA,
     $              WORK( PTR2TAU ), A, IA, JA, DESCA, WORK( PTR2WORK ),
     $              SIZEMQRLEFT, INFO )
*
*     Reinitialize pointer to WORK array. Dimension of array TAU in
*     this case is  LOCr(IA+MIN(M,N)-1).
*
      PTR2WORK = PTR2TAU + MAX( 1, DTAU2 ) + 100
*
*     Use the same workspace to generate a random matrix AA2.
*
      CALL PSMATGEN( DESCA( CTXT_ ), 'N', 'N', M, N, DESCA( MB_ ),
     $               DESCA( NB_ ), WORK( PTR2AA ), DESCA( LLD_ ),
     $               DESCA( RSRC_ ), DESCA( CSRC_ ), ISEED( 2 ), 0, MP,
     $               0, NQ, MYROW, MYCOL, NPROW, NPCOL )
*
*     Produce LQ decomposition of random matrix  AA2 -> L*VT.
*
      CALL PSGELQF( M, N, WORK( PTR2AA ), IA, JA, DESCA,
     $              WORK( PTR2TAU ), WORK( PTR2WORK ), SIZELQF, INFO )
*
*     Calculate A = A*VT.
*
      CALL PSORMLQ( 'R', 'N', M, N, SIZE, WORK( PTR2AA ), IA, JA, DESCA,
     $              WORK( PTR2TAU ), A, IA, JA, DESCA, WORK( PTR2WORK ),
     $              SIZEMLQRIGHT, INFO )
*
*     End of PSLAGGE
*
   20 CONTINUE
      RETURN
      END