1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
*
*
SUBROUTINE PZLATMS( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
$ KL, KU, PACK, A, IA, JA, DESCA, ORDER, WORK,
$ LWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER DIST, PACK, SYM
INTEGER IA, INFO, JA, KL, KU, LWORK, M, MODE, N, ORDER
DOUBLE PRECISION COND, DMAX
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), ISEED( 4 )
DOUBLE PRECISION D( * )
COMPLEX*16 A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PZLATMS generates random Hermitian matrices with specified
* eigenvalues for testing SCALAPACK programs.
*
* PZLATMS operates by applying the following sequence of
* operations:
*
* Set the diagonal to D, where D may be input or
* computed according to MODE, COND, DMAX, and SYM
* as described below.
*
* Generate a dense M x N matrix by multiplying D on the left
* and the right by random unitary matrices, then:
*
* Reduce the bandwidth according to KL and KU, using
* Householder transformations.
* ### bandwidth reduction NOT SUPPORTED ###
*
* Arguments
* =========
*
* M - (global input) INTEGER
* The number of rows of A. Not modified.
*
* N - (global input) INTEGER
* The number of columns of A. Not modified.
* ### M .ne. N unsupported
*
* DIST - (global input) CHARACTER*1
* On entry, DIST specifies the type of distribution to be used
* to generate the random eigen-/singular values.
* 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform )
* 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
* 'N' => NORMAL( 0, 1 ) ( 'N' for normal )
* Not modified.
*
* ISEED - (global input) INTEGER array, dimension ( 4 )
* On entry ISEED specifies the seed of the random number
* generator. They should lie between 0 and 4095 inclusive,
* and ISEED(4) should be odd. The random number generator
* uses a linear congruential sequence limited to small
* integers, and so should produce machine independent
* random numbers. The values of ISEED are changed on
* exit, and can be used in the next call to ZLATMS
* to continue the same random number sequence.
* Changed on exit.
*
* SYM - (global input) CHARACTER*1
* If SYM='S' or 'H', the generated matrix is Hermitian, with
* eigenvalues specified by D, COND, MODE, and DMAX; they
* may be positive, negative, or zero.
* If SYM='P', the generated matrix is Hermitian, with
* eigenvalues (= singular values) specified by D, COND,
* MODE, and DMAX; they will not be negative.
* If SYM='N', the generated matrix is nonsymmetric, with
* singular values specified by D, COND, MODE, and DMAX;
* they will not be negative.
* ### SYM = 'N' NOT SUPPORTED ###
* Not modified.
*
* D - (local input/output) DOUBLE PRECISION array,
* dimension ( MIN( M , N ) )
* This array is used to specify the singular values or
* eigenvalues of A (see SYM, above.) If MODE=0, then D is
* assumed to contain the singular/eigenvalues, otherwise
* they will be computed according to MODE, COND, and DMAX,
* and placed in D.
* Modified if MODE is nonzero.
*
* MODE - (global input) INTEGER
* On entry this describes how the singular/eigenvalues are to
* be specified:
* MODE = 0 means use D as input
* MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
* MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
* MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
* MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
* MODE = 5 sets D to random numbers in the range
* ( 1/COND , 1 ) such that their logarithms
* are uniformly distributed.
* MODE = 6 set D to random numbers from same distribution
* as the rest of the matrix.
* MODE < 0 has the same meaning as ABS(MODE), except that
* the order of the elements of D is reversed.
* Thus if MODE is positive, D has entries ranging from
* 1 to 1/COND, if negative, from 1/COND to 1,
* If SYM='S' or 'H', and MODE is neither 0, 6, nor -6, then
* the elements of D will also be multiplied by a random
* sign (i.e., +1 or -1.)
* Not modified.
*
* COND - (global input) DOUBLE PRECISION
* On entry, this is used as described under MODE above.
* If used, it must be >= 1. Not modified.
*
* DMAX - (global input) DOUBLE PRECISION
* If MODE is neither -6, 0 nor 6, the contents of D, as
* computed according to MODE and COND, will be scaled by
* DMAX / max(abs(D(i))); thus, the maximum absolute eigen- or
* singular value (which is to say the norm) will be abs(DMAX).
* Note that DMAX need not be positive: if DMAX is negative
* (or zero), D will be scaled by a negative number (or zero).
* Not modified.
*
* KL - (global input) INTEGER
* This specifies the lower bandwidth of the matrix. For
* example, KL=0 implies upper triangular, KL=1 implies upper
* Hessenberg, and KL being at least M-1 means that the matrix
* has full lower bandwidth. KL must equal KU if the matrix
* is Hermitian.
* Not modified.
* ### 1 <= KL < N-1 is NOT SUPPORTED ###
*
* KU - (global input) INTEGER
* This specifies the upper bandwidth of the matrix. For
* example, KU=0 implies lower triangular, KU=1 implies lower
* Hessenberg, and KU being at least N-1 means that the matrix
* has full upper bandwidth. KL must equal KU if the matrix
* is Hermitian.
* Not modified.
* ### 1 <= KU < N-1 is NOT SUPPORTED ###
*
* PACK - (global input) CHARACTER*1
* This specifies packing of matrix as follows:
* 'N' => no packing
* ### PACK must be 'N' all other options NOT SUPPORTED ###
*
* A - (local output) COMPLEX*16 array
* Global dimension (M, N), local dimension (MP, NQ)
* On exit A is the desired test matrix.
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* ORDER - (input) INTEGER
* The number of reflectors used to define the orthogonal
* matrix Q. A = Q * D * Q'
* Higher ORDER requires more computation and communication.
*
* WORK - (local input/output) COMPLEX*16 array,
* dimension (LWORK)
*
* LWORK - (local input) INTEGER dimension of WORK
* LWORK >= SIZETMS as returned by PZLASIZESEP
*
* INFO - (global output) INTEGER
* Error code. On exit, INFO will be set to one of the
* following values:
* 0 => normal return
* -1 => M negative or unequal to N and SYM='S', 'H', or 'P'
* -2 => N negative
* -3 => DIST illegal string
* -5 => SYM illegal string
* -7 => MODE not in range -6 to 6
* -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
* -10 => KL negative
* -11 => KU negative, or SYM='S' or 'H' and KU not equal to KL
* -16 => DESCA is inconsistent
* -17 => ORDER not in the range 0 to N inclusive
* 1 => Error return from DLATM1
* 2 => Cannot scale to DMAX (max. sing. value is 0)
* 3 => Error return from PZLAGHE
*
*-----------------------------------------------------------------------
*
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 ZZERO
PARAMETER ( ZZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, IDIST, IINFO, IPACK, IRSIGN, ISYM, LLB,
$ MNMIN, MYCOL, MYROW, NP, NPCOL, NPROW, NQ
DOUBLE PRECISION ALPHA, TEMP
* ..
* .. Local Arrays ..
INTEGER IDUM1( 1 ), IDUM2( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC
EXTERNAL LSAME, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DLATM1, DSCAL,
$ PCHK1MAT, PXERBLA, PZLAGHE, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* 1) Decode and Test the input parameters.
* Initialize flags & seed.
*
*
INFO = 0
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
IF( ( MYROW.GE.NPROW .OR. MYROW.LT.0 ) .OR.
$ ( MYCOL.GE.NPCOL .OR. MYCOL.LT.0 ) )RETURN
*
NP = NUMROC( N, DESCA( MB_ ), MYROW, 0, NPROW )
NQ = NUMROC( N, DESCA( NB_ ), MYCOL, 0, NPCOL )
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Decode DIST
*
IF( LSAME( DIST, 'U' ) ) THEN
IDIST = 1
ELSE IF( LSAME( DIST, 'S' ) ) THEN
IDIST = 2
ELSE IF( LSAME( DIST, 'N' ) ) THEN
IDIST = 3
ELSE
IDIST = -1
END IF
*
* Decode SYM
*
IF( LSAME( SYM, 'N' ) ) THEN
ISYM = 1
IRSIGN = 0
ELSE IF( LSAME( SYM, 'P' ) ) THEN
ISYM = 2
IRSIGN = 0
ELSE IF( LSAME( SYM, 'S' ) ) THEN
ISYM = 2
IRSIGN = 1
ELSE IF( LSAME( SYM, 'H' ) ) THEN
ISYM = 2
IRSIGN = 1
ELSE
ISYM = -1
END IF
*
* Decode PACK
*
IF( LSAME( PACK, 'N' ) ) THEN
IPACK = 0
ELSE
IPACK = 1
END IF
*
* Set certain internal parameters
*
MNMIN = MIN( M, N )
LLB = MIN( KL, M-1 )
*
IF( ORDER.EQ.0 )
$ ORDER = N
*
* Set INFO if an error
*
IF( NPROW.EQ.-1 ) THEN
INFO = -( 1600+CTXT_ )
ELSE
CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 16, INFO )
IF( INFO.EQ.0 ) THEN
IF( M.NE.N .AND. ISYM.NE.1 ) THEN
INFO = -2
ELSE IF( IDIST.EQ.-1 ) THEN
INFO = -3
ELSE IF( ISYM.EQ.-1 ) THEN
INFO = -5
ELSE IF( ABS( MODE ).GT.6 ) THEN
INFO = -7
ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.
$ ONE ) THEN
INFO = -8
ELSE IF( KL.LT.0 ) THEN
INFO = -10
ELSE IF( KU.LT.0 .OR. ( ISYM.NE.1 .AND. KL.NE.KU ) ) THEN
INFO = -11
ELSE IF( ( ORDER.LT.0 ) .OR. ( ORDER.GT.N ) ) THEN
INFO = -17
END IF
END IF
CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 16, 0, IDUM1, IDUM2,
$ INFO )
END IF
*
* Check for unsupported features
*
IF( ISYM.NE.2 ) THEN
INFO = -5
ELSE IF( IPACK.NE.0 ) THEN
INFO = -12
ELSE IF( KL.GT.0 .AND. KL.LT.M-1 ) THEN
INFO = -10
ELSE IF( KU.GT.0 .AND. KU.LT.N-1 ) THEN
INFO = -11
ELSE IF( LLB.NE.0 .AND. LLB.NE.M-1 ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCA( CTXT_ ), 'PZLATMS', -INFO )
RETURN
END IF
*
* Initialize random number generator
*
DO 10 I = 1, 4
ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
10 CONTINUE
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* 2) Set up D if indicated.
*
* Compute D according to COND and MODE
*
CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, IINFO )
*
IF( IINFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
*
*
IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
*
* Scale by DMAX
*
TEMP = ABS( D( 1 ) )
DO 20 I = 2, MNMIN
TEMP = MAX( TEMP, ABS( D( I ) ) )
20 CONTINUE
*
IF( TEMP.GT.ZERO ) THEN
ALPHA = DMAX / TEMP
ELSE
INFO = 2
RETURN
END IF
*
CALL DSCAL( MNMIN, ALPHA, D, 1 )
*
END IF
*
CALL ZLASET( 'A', NP, NQ, ZZERO, ZZERO, A, DESCA( LLD_ ) )
*
* Hermitian -- A = U D U'
*
CALL PZLAGHE( M, LLB, D, A, IA, JA, DESCA, ISEED, ORDER, WORK,
$ LWORK, IINFO )
*
RETURN
*
* End of PZLATMS
*
END
|