1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
|
SUBROUTINE PZSEPRSUBTST( WKNOWN, JOBZ, RANGE, UPLO, N, VL, VU, IL,
$ IU, THRESH, ABSTOL, A, COPYA, Z, IA, JA,
$ DESCA, WIN, WNEW, IFAIL, ICLUSTR, GAP,
$ IPREPAD, IPOSTPAD, WORK, LWORK, RWORK,
$ LRWORK, LWORK1, IWORK, LIWORK, RESULT,
$ TSTNRM, QTQNRM, NOUT )
*
* -- ScaLAPACK routine (@(MODE)version *TBA*) --
* University of California, Berkeley and
* University of Tennessee, Knoxville.
* October 21, 2006
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
LOGICAL WKNOWN
CHARACTER JOBZ, RANGE, UPLO
INTEGER IA, IL, IPOSTPAD, IPREPAD, IU, JA, LIWORK,
$ LWORK, LWORK1, N, NOUT, RESULT
DOUBLE PRECISION ABSTOL, QTQNRM, THRESH, TSTNRM, VL, VU
INTEGER LRWORK
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), ICLUSTR( * ), IFAIL( * ),
$ IWORK( * )
COMPLEX*16 A( * ), COPYA( * ), WORK( * ), Z( * )
DOUBLE PRECISION GAP( * ), RWORK( * ), WIN( * ), WNEW( * )
* ..
*
* Purpose
* =======
*
* PZSEPRSUBTST calls PZSYEVR and then tests its output.
* If JOBZ = 'V' then the following two tests are performed:
* |AQ -QL| / (abstol + eps * norm(A) ) < N*THRESH
* |QT * Q - I| / eps < N*THRESH
* If WKNOWN then
* we check to make sure that the eigenvalues match expectations
* i.e. |WIN - WNEW(1+IPREPAD)| / (eps * |WIN|) < THRESH
* where WIN is the array of eigenvalues computed.
*
* Arguments
* =========
*
* NP = the number of rows local to a given process.
* NQ = the number of columns local to a given process.
*
* WKNOWN (global input) INTEGER
* .FALSE.: WIN does not contain the eigenvalues
* .TRUE.: WIN does contain the eigenvalues
*
* JOBZ (global input) CHARACTER*1
* Specifies whether or not to compute the eigenvectors:
* = 'N': Compute eigenvalues only.
* = 'V': Compute eigenvalues and eigenvectors.
* Must be 'V' on first call.
*
* RANGE (global input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the interval [VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
* Must be 'A' on first call.
*
* UPLO (global input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* Size of the matrix to be tested. (global size)
*
* VL (global input) DOUBLE PRECISION
* If RANGE='V', the lower bound of the interval to be searched
* for eigenvalues. Not referenced if RANGE = 'A' or 'I'.
*
* VU (global input) DOUBLE PRECISION
* If RANGE='V', the upper bound of the interval to be searched
* for eigenvalues. Not referenced if RANGE = 'A' or 'I'.
*
* IL (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* smallest eigenvalue to be returned. IL >= 1.
* Not referenced if RANGE = 'A' or 'V'.
*
* IU (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* largest eigenvalue to be returned. min(IL,N) <= IU <= N.
* Not referenced if RANGE = 'A' or 'V'.
*
* THRESH (global input) DOUBLE PRECISION
* A test will count as "failed" if the "error", computed as
* described below, exceeds THRESH. Note that the error
* is scaled to be O(1), so THRESH should be a reasonably
* small multiple of 1, e.g., 100 or 250. In particular,
* it should not depend on the size of the matrix.
* It must be at least zero.
*
* ABSTOL (global input) DOUBLE PRECISION
* The absolute tolerance for the residual test.
*
* A (local workspace) COMPLEX*16 array
* global dimension (N, N), local dimension (DESCA(DLEN_), NQ)
* The test matrix, which is subsequently overwritten.
* A is distributed in a 2D-block cyclic manner over both rows
* and columns.
* A has already been padded front and back, use A(1+IPREPAD)
*
* COPYA (local input) COMPLEX*16 array, dimension(N*N)
* COPYA holds a copy of the original matrix A
* identical in both form and content to A
*
* Z (local workspace) COMPLEX*16 array, dim (N*N)
* Z is distributed in the same manner as A
* Z contains the eigenvector matrix
* Z is used as workspace by the test routines
* PZSEPCHK and PZSEPQTQ.
* Z has already been padded front and back, use Z(1+IPREPAD)
*
* IA (global input) INTEGER
* On entry, IA specifies the global row index of the submatrix
* of the global matrix A, COPYA and Z to operate on.
*
* JA (global input) INTEGER
* On entry, IA specifies the global column index of the submat
* of the global matrix A, COPYA and Z to operate on.
*
* DESCA (global/local input) INTEGER array of dimension 8
* The array descriptor for the matrix A, COPYA and Z.
*
* WIN (global input) DOUBLE PRECISION array, dimension (N)
* If .not. WKNOWN, WIN is ignored on input
* Otherwise, WIN() is taken as the standard by which the
* eigenvalues are to be compared against.
*
* WNEW (global workspace) DOUBLE PRECISION array, dimension (N)
* The computed eigenvalues.
* If JOBZ <> 'V' or RANGE <> 'A' these eigenvalues are
* compared against those in WIN().
* WNEW has already been padded front and back,
* use WNEW(1+IPREPAD)
*
* IFAIL (global output) INTEGER array, dimension (N)
* If JOBZ = 'V', then on normal exit, the first M elements of
* IFAIL are zero. If INFO > 0 on exit, then IFAIL contains the
* indices of the eigenvectors that failed to converge.
* If JOBZ = 'N', then IFAIL is not referenced.
* IFAIL has already been padded front and back,
* use IFAIL(1+IPREPAD)
*
* ICLUSTR (global workspace) integer array, dimension (2*NPROW*NPCOL)
*
* GAP (global workspace) DOUBLE PRECISION array,
* dimension (NPROW*NPCOL)
*
* WORK (local workspace) COMPLEX*16 array, dimension (LWORK)
* WORK has already been padded front and back,
* use WORK(1+IPREPAD)
*
* LWORK (local input) INTEGER
* The actual length of the array WORK after padding.
*
* RWORK (local workspace) DOUBLE PRECISION array, dimension (LRWORK)
* RWORK has already been padded front and back,
* use RWORK(1+IPREPAD)
*
* LRWORK (local input) INTEGER
* The actual length of the array RWORK after padding.
*
* LWORK1 (local input) INTEGER
* The amount of real workspace to pass to the eigensolver.
*
* IWORK (local workspace) INTEGER array, dimension (LIWORK)
* IWORK has already been padded front and back,
* use IWORK(1+IPREPAD)
*
* LIWORK (local input) INTEGER
* The length of the array IWORK after padding.
*
* RESULT (global output) INTEGER
* The result of this call.
* RESULT = -3 => This process did not participate
* RESULT = 0 => All tests passed
* RESULT = 1 => ONe or more tests failed
*
* TSTNRM (global output) DOUBLE PRECISION
* |AQ- QL| / (ABSTOL+EPS*|A|)*N
*
* QTQNRM (global output) DOUBLE PRECISION
* |QTQ -I| / N*EPS
*
* .. Parameters ..
*
INTEGER DLEN_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( DLEN_ = 9,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION PADVAL, FIVE, NEGONE
PARAMETER ( PADVAL = 13.5285D0, FIVE = 5.0D0,
$ NEGONE = -1.0D0 )
COMPLEX*16 ZPADVAL
PARAMETER ( ZPADVAL = ( 13.989D0, 1.93D0 ) )
INTEGER IPADVAL
PARAMETER ( IPADVAL = 927 )
* ..
* .. Local Scalars ..
LOGICAL MISSLARGEST, MISSSMALLEST
INTEGER I, IAM, INDIWRK, INFO, ISIZESUBTST, ISIZEEVR,
$ ISIZETST, J, M, MAXEIGS, MAXIL, MAXIU, MAXSIZE,
$ MINIL, MQ, MYCOL, MYIL, MYROW, NCLUSTERS, NP,
$ NPCOL, NPROW, NQ, NZ, OLDIL, OLDIU, OLDNZ, RES,
$ SIZECHK, SIZEMQRLEFT, SIZEMQRRIGHT, SIZEQRF,
$ SIZEQTQ, SIZESUBTST, SIZEEVR, SIZETMS,
$ SIZETST, VALSIZE, VECSIZE
INTEGER RSIZEEVR, RSIZESUBTST, RSIZETST
DOUBLE PRECISION EPS, EPSNORMA, ERROR, MAXERROR, MAXVU,
$ MINERROR, MINVL, NORMWIN, OLDVL, OLDVU,
$ SAFMIN
* ..
* .. Local Arrays ..
INTEGER DESCZ( DLEN_ ), ISEED( 4 ), ITMP( 2 )
* ..
* .. External Functions ..
*
LOGICAL LSAME
INTEGER NUMROC
DOUBLE PRECISION PDLAMCH, PZLANHE
EXTERNAL LSAME, NUMROC, PDLAMCH, PZLANHE
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCINIT, DGAMN2D, DGAMX2D,
$ IGAMN2D, IGAMX2D, PDCHEKPAD, PDFILLPAD,
$ PICHEKPAD, PIFILLPAD, PZCHEKPAD, PZELSET,
$ PZFILLPAD, PZHEEVR, PZLASIZEHEEVR,
$ PZLASIZESEPR, PZSEPCHK, PZSEPQTQ, SLBOOT,
$ SLTIMER, ZLACPY
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
CALL PZLASIZESEPR( DESCA, IPREPAD, IPOSTPAD, SIZEMQRLEFT,
$ SIZEMQRRIGHT, SIZEQRF, SIZETMS, SIZEQTQ,
$ SIZECHK, SIZEEVR, RSIZEEVR, ISIZEEVR,
$ SIZESUBTST, RSIZESUBTST, ISIZESUBTST,
$ SIZETST, RSIZETST, ISIZETST )
*
TSTNRM = NEGONE
QTQNRM = NEGONE
EPS = PDLAMCH( DESCA( CTXT_ ), 'Eps' )
SAFMIN = PDLAMCH( DESCA( CTXT_ ), 'Safe min' )
*
NORMWIN = SAFMIN / EPS
IF( N.GE.1 )
$ NORMWIN = MAX( ABS( WIN( 1 ) ), ABS( WIN( N ) ), NORMWIN )
*
* Make sure that no information from previous calls is used
*
NZ = -13
OLDNZ = NZ
OLDIL = IL
OLDIU = IU
OLDVL = VL
OLDVU = VU
*
DO 10 I = 1, LWORK1, 1
RWORK( I+IPREPAD ) = 14.3D0
10 CONTINUE
*
DO 15 I = 1, LWORK, 1
WORK( I+IPREPAD ) = ( 15.63D0, 1.1D0 )
15 CONTINUE
*
DO 20 I = 1, LIWORK, 1
IWORK( I+IPREPAD ) = 14
20 CONTINUE
*
DO 30 I = 1, N
WNEW( I+IPREPAD ) = 3.14159D0
30 CONTINUE
*
ICLUSTR( 1+IPREPAD ) = 139
*
IF (LSAME( RANGE, 'V' ) ) THEN
* WRITE(*,*) 'VL VU = ', VL, ' ', VU
END IF
IF( LSAME( JOBZ, 'N' ) ) THEN
MAXEIGS = 0
ELSE
IF( LSAME( RANGE, 'A' ) ) THEN
MAXEIGS = N
ELSE IF( LSAME( RANGE, 'I' ) ) THEN
MAXEIGS = IU - IL + 1
ELSE
MINVL = VL - NORMWIN*FIVE*EPS - ABSTOL
MAXVU = VU + NORMWIN*FIVE*EPS + ABSTOL
* WRITE(*,*) 'MINVL = ', MINVL, ' MAXVU = ', MAXVU
* WRITE(*,*) 'WIN = ', WIN( 1 )
MINIL = 1
MAXIU = 0
DO 40 I = 1, N
IF( WIN( I ).LT.MINVL )
$ MINIL = MINIL + 1
IF( WIN( I ).LE.MAXVU )
$ MAXIU = MAXIU + 1
40 CONTINUE
*
MAXEIGS = MAXIU - MINIL + 1
END IF
END IF
*
*
CALL DESCINIT( DESCZ, DESCA( M_ ), DESCA( N_ ), DESCA( MB_ ),
$ DESCA( NB_ ), DESCA( RSRC_ ), DESCA( CSRC_ ),
$ DESCA( CTXT_ ), DESCA( LLD_ ), INFO )
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
INDIWRK = 1 + IPREPAD + NPROW*NPCOL + 1
*
IAM = 1
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 )
$ IAM = 0
*
* If this process is not involved in this test, bail out now
*
RESULT = -3
IF( MYROW.GE.NPROW .OR. MYROW.LT.0 )
$ GO TO 150
RESULT = 0
*
ISEED( 1 ) = 1
*
CALL PZLASIZEHEEVR( WKNOWN, RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WIN, MAXSIZE, VECSIZE, VALSIZE )
*
NP = NUMROC( N, DESCA( MB_ ), MYROW, 0, NPROW )
NQ = NUMROC( N, DESCA( NB_ ), MYCOL, 0, NPCOL )
MQ = NUMROC( MAXEIGS, DESCA( NB_ ), MYCOL, 0, NPCOL )
*
CALL ZLACPY( 'A', NP, NQ, COPYA, DESCA( LLD_ ), A( 1+IPREPAD ),
$ DESCA( LLD_ ) )
*
CALL PZFILLPAD( DESCA( CTXT_ ), NP, NQ, A, DESCA( LLD_ ), IPREPAD,
$ IPOSTPAD, ZPADVAL )
*
CALL PZFILLPAD( DESCZ( CTXT_ ), NP, MQ, Z, DESCZ( LLD_ ), IPREPAD,
$ IPOSTPAD, ZPADVAL+1.0D0 )
*
* WRITE(*,*) ' NP = ', NP, ' MQ = ', MQ, ' LDZ = ', DESCZ( LLD_ ),
* $ ' IPREPAD = ', IPREPAD, ' IPOSTPAD = ', IPOSTPAD,
* $ ' MAXEIGS = ', MAXEIGS
* WRITE(*,*) ' PADZ( 1 ) = ', Z( 1 ), ' PADZ( 2 ) = ', Z( 2 ),
* $ ' PADZ( 3 ) = ', Z( 3 ), ' PADZ( 4 ) = ', Z( 4 )
*
CALL PDFILLPAD( DESCA( CTXT_ ), N, 1, WNEW, N, IPREPAD, IPOSTPAD,
$ PADVAL+2.0D0 )
*
CALL PDFILLPAD( DESCA( CTXT_ ), NPROW*NPCOL, 1, GAP, NPROW*NPCOL,
$ IPREPAD, IPOSTPAD, PADVAL+3.0D0 )
*
CALL PDFILLPAD( DESCA( CTXT_ ), LWORK1, 1, RWORK,LWORK1, IPREPAD,
$ IPOSTPAD, PADVAL+4.0D0 )
*
CALL PIFILLPAD( DESCA( CTXT_ ), LIWORK, 1, IWORK, LIWORK, IPREPAD,
$ IPOSTPAD, IPADVAL )
*
CALL PIFILLPAD( DESCA( CTXT_ ), N, 1, IFAIL, N, IPREPAD, IPOSTPAD,
$ IPADVAL )
*
CALL PIFILLPAD( DESCA( CTXT_ ), 2*NPROW*NPCOL, 1, ICLUSTR,
$ 2*NPROW*NPCOL, IPREPAD, IPOSTPAD, IPADVAL )
*
CALL PZFILLPAD( DESCA( CTXT_ ), LWORK, 1, WORK, LWORK, IPREPAD,
$ IPOSTPAD, ZPADVAL+4.1D0 )
*
* Make sure that PZHEEVR does not cheat (i.e. use answers
* already computed.)
*
DO 60 I = 1, N, 1
DO 50 J = 1, MAXEIGS, 1
CALL PZELSET( Z( 1+IPREPAD ), I, J, DESCA,
$ ( 13.0D0, 1.34D0 ) )
50 CONTINUE
60 CONTINUE
*
* Reset and start the timer
*
CALL SLBOOT
CALL SLTIMER( 1 )
CALL SLTIMER( 6 )
*********************************
*
* Main call to PZHEEVR
*
CALL PZHEEVR( JOBZ, RANGE, UPLO, N, A( 1+IPREPAD ), IA, JA, DESCA,
$ VL, VU, IL, IU, M, NZ, WNEW( 1+IPREPAD ),
$ Z( 1+IPREPAD ), IA, JA, DESCA,
$ WORK( 1+IPREPAD ), SIZEEVR,
$ RWORK( 1+IPREPAD ), LWORK1,
$ IWORK( 1+IPREPAD ), LIWORK, INFO )
*
*********************************
*
* Stop timer
*
CALL SLTIMER( 6 )
CALL SLTIMER( 1 )
*
* Indicate that there are no unresolved clusters.
* This is necessary so that the tester
* (adapted from the one originally made for PDSYEVX)
* works correctly.
ICLUSTR( 1+IPREPAD ) = 0
*
IF( THRESH.LE.0 ) THEN
RESULT = 0
ELSE
CALL PZCHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-A', NP, NQ, A,
$ DESCA( LLD_ ), IPREPAD, IPOSTPAD, ZPADVAL )
*
CALL PZCHEKPAD( DESCZ( CTXT_ ), 'PZHEEVR-Z', NP, MQ, Z,
$ DESCZ( LLD_ ), IPREPAD, IPOSTPAD,
$ ZPADVAL+1.0D0 )
*
CALL PDCHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-WNEW', N, 1, WNEW, N,
$ IPREPAD, IPOSTPAD, PADVAL+2.0D0 )
*
CALL PDCHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-GAP', NPROW*NPCOL, 1,
$ GAP, NPROW*NPCOL, IPREPAD, IPOSTPAD,
$ PADVAL+3.0D0 )
*
CALL PDCHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-RWORK',LWORK1, 1,
$ RWORK, LWORK1, IPREPAD, IPOSTPAD,
$ PADVAL+4.0D0 )
*
CALL PZCHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-WORK',LWORK, 1,
$ WORK, LWORK, IPREPAD, IPOSTPAD,
$ ZPADVAL+4.1D0 )
*
CALL PICHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-IWORK', LIWORK, 1,
$ IWORK, LIWORK, IPREPAD, IPOSTPAD, IPADVAL )
*
CALL PICHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-IFAIL', N, 1, IFAIL,
$ N, IPREPAD, IPOSTPAD, IPADVAL )
*
CALL PICHEKPAD( DESCA( CTXT_ ), 'PZHEEVR-ICLUSTR',
$ 2*NPROW*NPCOL, 1, ICLUSTR, 2*NPROW*NPCOL,
$ IPREPAD, IPOSTPAD, IPADVAL )
*
* If we now know the spectrum, we can potentially reduce MAXSIZE.
*
IF( LSAME( RANGE, 'A' ) ) THEN
CALL PZLASIZEHEEVR( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
$ ISEED, WNEW( 1+IPREPAD ), MAXSIZE,
$ VECSIZE, VALSIZE )
END IF
*
* Check INFO
* Make sure that all processes return the same value of INFO
*
ITMP( 1 ) = INFO
ITMP( 2 ) = INFO
*
CALL IGAMN2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP, 1, 1, 1,
$ -1, -1, 0 )
CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP( 2 ), 1, 1,
$ 1, -1, -1, 0 )
*
*
IF( ITMP( 1 ).NE.ITMP( 2 ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = * )
$ 'Different processes return different INFO'
RESULT = 1
ELSE IF( MOD( INFO, 2 ).EQ.1 .OR. INFO.GT.7 .OR. INFO.LT.0 )
$ THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 )INFO
RESULT = 1
ELSE IF( MOD( INFO / 2, 2 ).EQ.1 .AND. LWORK1.GE.MAXSIZE ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9996 )INFO
RESULT = 1
ELSE IF( MOD( INFO / 4, 2 ).EQ.1 .AND. LWORK1.GE.VECSIZE ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9996 )INFO
RESULT = 1
END IF
*
IF( LSAME( JOBZ, 'V' ) .AND. ( ICLUSTR( 1+IPREPAD ).NE.
$ 0 ) .AND. ( MOD( INFO / 2, 2 ).NE.1 ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9995 )
RESULT = 1
END IF
*
* Check M
*
IF( ( M.LT.0 ) .OR. ( M.GT.N ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9994 )
WRITE( NOUT,*) 'M = ', M, '\n', 'N = ', N
RESULT = 1
ELSE IF( LSAME( RANGE, 'A' ) .AND. ( M.NE.N ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9993 )
RESULT = 1
ELSE IF( LSAME( RANGE, 'I' ) .AND. ( M.NE.IU-IL+1 ) ) THEN
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = 9992 )
WRITE( NOUT,*) 'IL = ', IL, ' IU = ', IU, ' M = ', M
END IF
RESULT = 1
ELSE IF( LSAME( JOBZ, 'V' ) .AND.
$ ( .NOT.( LSAME( RANGE, 'V' ) ) ) .AND. ( M.NE.NZ ) )
$ THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9991 )
RESULT = 1
END IF
*
* Check NZ
*
IF( LSAME( JOBZ, 'V' ) ) THEN
IF( LSAME( RANGE, 'V' ) ) THEN
IF( NZ.GT.M ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9990 )
RESULT = 1
END IF
IF( NZ.LT.M .AND. MOD( INFO / 4, 2 ).NE.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9989 )
RESULT = 1
END IF
ELSE
IF( NZ.NE.M ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9988 )
RESULT = 1
END IF
END IF
END IF
IF( RESULT.EQ.0 ) THEN
*
* Make sure that all processes return the same # of eigenvalues
*
ITMP( 1 ) = M
ITMP( 2 ) = M
*
CALL IGAMN2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP, 1, 1, 1,
$ -1, -1, 0 )
CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP( 2 ), 1,
$ 1, 1, -1, -1, 0 )
*
IF( ITMP( 1 ).NE.ITMP( 2 ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9987 )
RESULT = 1
ELSE
*
* Ensure that different processes return the same eigenvalues
*
DO 70 I = 1, M
RWORK( I ) = WNEW( I+IPREPAD )
RWORK( I+M ) = WNEW( I+IPREPAD )
70 CONTINUE
*
CALL DGAMN2D( DESCA( CTXT_ ), 'a', ' ', M, 1, RWORK, M,
$ 1, 1, -1, -1, 0 )
CALL DGAMX2D( DESCA( CTXT_ ), 'a', ' ', M, 1,
$ RWORK( 1+M ), M, 1, 1, -1, -1, 0 )
*
DO 80 I = 1, M
IF( RESULT.EQ.0 .AND. ( ABS( RWORK( I )-RWORK( M+
$ I ) ).GT.FIVE*EPS*ABS( RWORK( I ) ) ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9986 )
RESULT = 1
END IF
80 CONTINUE
END IF
END IF
*
* Make sure that all processes return the same # of clusters
*
IF( LSAME( JOBZ, 'V' ) ) THEN
NCLUSTERS = 0
DO 90 I = 0, NPROW*NPCOL - 1
IF( ICLUSTR( 1+IPREPAD+2*I ).EQ.0 )
$ GO TO 100
NCLUSTERS = NCLUSTERS + 1
90 CONTINUE
100 CONTINUE
ITMP( 1 ) = NCLUSTERS
ITMP( 2 ) = NCLUSTERS
*
CALL IGAMN2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP, 1, 1, 1,
$ -1, -1, 0 )
CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, ITMP( 2 ), 1,
$ 1, 1, -1, -1, 0 )
*
IF( ITMP( 1 ).NE.ITMP( 2 ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9985 )
RESULT = 1
ELSE
*
* Make sure that different processes return the same clusters
*
DO 110 I = 1, NCLUSTERS
IWORK( INDIWRK+I ) = ICLUSTR( I+IPREPAD )
IWORK( INDIWRK+I+NCLUSTERS ) = ICLUSTR( I+IPREPAD )
110 CONTINUE
CALL IGAMN2D( DESCA( CTXT_ ), 'a', ' ', NCLUSTERS*2+1, 1,
$ IWORK( INDIWRK+1 ), NCLUSTERS*2+1, 1, 1,
$ -1, -1, 0 )
CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', NCLUSTERS*2+1, 1,
$ IWORK( INDIWRK+1+NCLUSTERS ),
$ NCLUSTERS*2+1, 1, 1, -1, -1, 0 )
*
DO 120 I = 1, NCLUSTERS
IF( RESULT.EQ.0 .AND. IWORK( INDIWRK+I ).NE.
$ IWORK( INDIWRK+NCLUSTERS+I ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9984 )
RESULT = 1
END IF
120 CONTINUE
*
IF( ICLUSTR( 1+IPREPAD+NCLUSTERS*2 ).NE.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9983 )
RESULT = 1
END IF
END IF
END IF
*
CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, RESULT, 1, 1, 1,
$ -1, -1, 0 )
IF( RESULT.NE.0 )
$ GO TO 150
*
* Compute eps * norm(A)
*
IF( N.EQ.0 ) THEN
EPSNORMA = EPS
ELSE
EPSNORMA = PZLANHE( 'I', UPLO, N, COPYA, IA, JA, DESCA,
$ RWORK )*EPS
END IF
*
IF( LSAME( JOBZ, 'V' ) ) THEN
*
* Perform the |A Z - Z W| test
*
CALL PDFILLPAD( DESCA( CTXT_ ), SIZECHK, 1, RWORK,SIZECHK,
$ IPREPAD, IPOSTPAD, 4.3D0 )
*
CALL PZSEPCHK( N, NZ, COPYA, IA, JA, DESCA,
$ MAX( ABSTOL+EPSNORMA, SAFMIN ), THRESH,
$ Z( 1+IPREPAD ), IA, JA, DESCZ,
$ A( 1+IPREPAD ), IA, JA, DESCA,
$ WNEW( 1+IPREPAD ), RWORK( 1+IPREPAD ),
$ SIZECHK, TSTNRM, RES )
*
CALL PDCHEKPAD( DESCA( CTXT_ ), 'PZSEPCHK-RWORK',SIZECHK, 1,
$ RWORK,SIZECHK, IPREPAD, IPOSTPAD, 4.3D0 )
*
IF( RES.NE.0 )
$ RESULT = 1
*
* Perform the |QTQ - I| test
*
CALL PDFILLPAD( DESCA( CTXT_ ), SIZEQTQ, 1,RWORK, SIZEQTQ,
$ IPREPAD, IPOSTPAD, 4.3D0 )
*
*
CALL PZSEPQTQ( N, NZ, THRESH, Z( 1+IPREPAD ), IA, JA, DESCZ,
$ A( 1+IPREPAD ), IA, JA, DESCA,
$ IWORK( 1+IPREPAD+1 ), ICLUSTR( 1+IPREPAD ),
$ GAP( 1+IPREPAD ),RWORK( IPREPAD+1 ), SIZEQTQ,
$ QTQNRM, INFO, RES )
*
CALL PDCHEKPAD( DESCA( CTXT_ ), 'PDSEPQTQ-RWORK',SIZEQTQ, 1,
$ RWORK,SIZEQTQ, IPREPAD, IPOSTPAD, 4.3D0 )
*
IF( RES.NE.0 )
$ RESULT = 1
*
IF( INFO.NE.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9998 )INFO
RESULT = 1
END IF
END IF
*
* Check to make sure that the right eigenvalues have been obtained
*
IF( WKNOWN ) THEN
* Set up MYIL if necessary
MYIL = IL
*
IF( LSAME( RANGE, 'V' ) ) THEN
MYIL = 1
MINIL = 1
MAXIL = N - M + 1
ELSE
IF( LSAME( RANGE, 'A' ) ) THEN
MYIL = 1
END IF
MINIL = MYIL
MAXIL = MYIL
END IF
*
* Find the largest difference between the computed
* and expected eigenvalues
*
MINERROR = NORMWIN
*
DO 140 MYIL = MINIL, MAXIL
MAXERROR = 0
*
* Make sure that we aren't skipping any important eigenvalues
*
MISSSMALLEST = .TRUE.
IF( .NOT.LSAME( RANGE, 'V' ) .OR. ( MYIL.EQ.1 ) )
$ MISSSMALLEST = .FALSE.
IF( MISSSMALLEST .AND. ( WIN( MYIL-1 ).LT.VL+NORMWIN*
$ FIVE*THRESH*EPS ) )MISSSMALLEST = .FALSE.
MISSLARGEST = .TRUE.
IF( .NOT.LSAME( RANGE, 'V' ) .OR. ( MYIL.EQ.MAXIL ) )
$ MISSLARGEST = .FALSE.
IF( MISSLARGEST .AND. ( WIN( MYIL+M ).GT.VU-NORMWIN*FIVE*
$ THRESH*EPS ) )MISSLARGEST = .FALSE.
IF( .NOT.MISSSMALLEST ) THEN
IF( .NOT.MISSLARGEST ) THEN
*
* Make sure that the eigenvalues that we report are OK
*
DO 130 I = 1, M
* WRITE(*,*) 'WIN WNEW = ', WIN( I+MYIL-1 ),
* $ WNEW( I+IPREPAD )
ERROR = ABS( WIN( I+MYIL-1 )-WNEW( I+IPREPAD ) )
MAXERROR = MAX( MAXERROR, ERROR )
130 CONTINUE
*
MINERROR = MIN( MAXERROR, MINERROR )
END IF
END IF
140 CONTINUE
*
* If JOBZ = 'V' and RANGE='A', we might be comparing
* against our estimate of what the eigenvalues ought to
* be, rather than comparing against what was computed
* last time around, so we have to be more generous.
*
IF( LSAME( JOBZ, 'V' ) .AND. LSAME( RANGE, 'A' ) ) THEN
IF( MINERROR.GT.NORMWIN*FIVE*FIVE*THRESH*EPS ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 )MINERROR, NORMWIN
RESULT = 1
END IF
ELSE
IF( MINERROR.GT.NORMWIN*FIVE*THRESH*EPS ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 )MINERROR, NORMWIN
RESULT = 1
END IF
END IF
END IF
*
* Make sure that the IL, IU, VL and VU were not altered
*
IF( IL.NE.OLDIL .OR. IU.NE.OLDIU .OR. VL.NE.OLDVL .OR. VU.NE.
$ OLDVU ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9982 )
RESULT = 1
END IF
*
IF( LSAME( JOBZ, 'N' ) .AND. ( NZ.NE.OLDNZ ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9981 )
RESULT = 1
END IF
*
END IF
*
* All processes should report the same result
*
CALL IGAMX2D( DESCA( CTXT_ ), 'a', ' ', 1, 1, RESULT, 1, 1, 1, -1,
$ -1, 0 )
*
150 CONTINUE
*
RETURN
*
9999 FORMAT( 'PZHEEVR returned INFO=', I7 )
9998 FORMAT( 'PZSEPQTQ returned INFO=', I7 )
9997 FORMAT( 'PZSEPRSUBTST minerror =', D11.2, ' normwin=', D11.2 )
9996 FORMAT( 'PZHEEVR returned INFO=', I7,
$ ' despite adequate workspace' )
9995 FORMAT( 'ICLUSTR(1).NE.0 but mod(INFO/2,2).NE.1' )
9994 FORMAT( 'M not in the range 0 to N' )
9993 FORMAT( 'M not equal to N' )
9992 FORMAT( 'M not equal to IU-IL+1' )
9991 FORMAT( 'M not equal to NZ' )
9990 FORMAT( 'NZ > M' )
9989 FORMAT( 'NZ < M' )
9988 FORMAT( 'NZ not equal to M' )
9987 FORMAT( 'Different processes return different values for M' )
9986 FORMAT( 'Different processes return different eigenvalues' )
9985 FORMAT( 'Different processes return ',
$ 'different numbers of clusters' )
9984 FORMAT( 'Different processes return different clusters' )
9983 FORMAT( 'ICLUSTR not zero terminated' )
9982 FORMAT( 'IL, IU, VL or VU altered by PZHEEVR' )
9981 FORMAT( 'NZ altered by PZHEEVR with JOBZ=N' )
*
* End of PZSEPRSUBTST
*
END
|