File: pzseprtst.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (823 lines) | stat: -rw-r--r-- 30,705 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
      SUBROUTINE PZSEPRTST(DESCA, UPLO, N, MATTYPE, SUBTESTS, THRESH,
     $                     ORDER, ABSTOL, ISEED, A, COPYA, Z, LDA, WIN,
     $                     WNEW, IFAIL, ICLUSTR, GAP, IPREPAD, IPOSTPAD,
     $                     WORK, LWORK, RWORK, LRWORK, 
     $                     IWORK, LIWORK, HETERO, NOUT, INFO )
*
*  -- ScaLAPACK routine (@(MODE)version *TBA*) --
*     University of California, Berkeley and
*     University of Tennessee, Knoxville. 
*     October 21, 2006
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER          HETERO, SUBTESTS, UPLO
      INTEGER            INFO, IPOSTPAD, IPREPAD, LDA, LIWORK, LWORK,
     $                   MATTYPE, N, NOUT, ORDER
      INTEGER            LRWORK
      DOUBLE PRECISION   ABSTOL, THRESH
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), ICLUSTR( * ), IFAIL( * ),
     $                   ISEED( 4 ), IWORK( * )
      DOUBLE PRECISION   GAP( * ),  WIN( * ), WNEW( * ), RWORK( * )
      COMPLEX*16         A( LDA, * ), COPYA( LDA, * ), 
     $                   WORK( * ), Z( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  PZSEPRTST builds a random matrix and runs PZHEEVR to
*  compute the eigenvalues and eigenvectors. Then it performs two tests 
*  to determine if the result is good enough.  The two tests are:
*       |AQ -QL| / (abstol + ulp * norm(A) )
*  and
*       |QT * Q - I| / ulp * norm(A)
*
*  The random matrix built depends upon the following parameters:
*     N, NB, ISEED, ORDER
*
*  Arguments
*  =========
*
*     NP = the number of rows local to a given process.
*     NQ = the number of columns local to a given process.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrices
*
*  UPLO     (global input) CHARACTER*1
*           Specifies whether the upper or lower triangular part of the
*           matrix A is stored:
*           = 'U':  Upper triangular
*           = 'L':  Lower triangular
*
*  N        (global input) INTEGER
*           Size of the matrix to be tested.  (global size)
*
*  MATTYPE  (global input) INTEGER
*           Matrix type
*  Currently, the list of possible types is:
*
*  (1)  The zero matrix.
*  (2)  The identity matrix.
*
*  (3)  A diagonal matrix with evenly spaced entries
*       1, ..., ULP  and random signs.
*       (ULP = (first number larger than 1) - 1 )
*  (4)  A diagonal matrix with geometrically spaced entries
*       1, ..., ULP  and random signs.
*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*       and random signs.
*
*  (6)  Same as (4), but multiplied by SQRT( overflow threshold )
*  (7)  Same as (4), but multiplied by SQRT( underflow threshold )
*
*  (8)  A matrix of the form  U' D U, where U is orthogonal and
*       D has evenly spaced entries 1, ..., ULP with random signs
*       on the diagonal.
*
*  (9)  A matrix of the form  U' D U, where U is orthogonal and
*       D has geometrically spaced entries 1, ..., ULP with random
*       signs on the diagonal.
*
*  (10) A matrix of the form  U' D U, where U is orthogonal and
*       D has "clustered" entries 1, ULP,..., ULP with random
*       signs on the diagonal.
*
*  (11) Same as (8), but multiplied by SQRT( overflow threshold )
*  (12) Same as (8), but multiplied by SQRT( underflow threshold )
*
*  (13) A matrix with random entries chosen from (-1,1).
*  (14) Same as (13), but multiplied by SQRT( overflow threshold )
*  (15) Same as (13), but multiplied by SQRT( underflow threshold )
*  (16) Same as (8), but diagonal elements are all positive.
*  (17) Same as (9), but diagonal elements are all positive.
*  (18) Same as (10), but diagonal elements are all positive.
*  (19) Same as (16), but multiplied by SQRT( overflow threshold )
*  (20) Same as (16), but multiplied by SQRT( underflow threshold )
*  (21) A tridiagonal matrix that is a direct sum of smaller diagonally
*       dominant submatrices. Each unreduced submatrix has geometrically
*       spaced diagonal entries 1, ..., ULP.
*  (22) A matrix of the form  U' D U, where U is orthogonal and
*       D has ceil(lgN) "clusters" at 0,1,2,...,ceil(lgN)-1. The
*       size of the cluster at the value I is 2^I.
*
*  SUBTESTS (global input) CHARACTER*1
*           'Y' - Perform subset tests
*           'N' - Do not perform subset tests
*
*  THRESH   (global input) DOUBLE PRECISION
*          A test will count as "failed" if the "error", computed as
*          described below, exceeds THRESH.  Note that the error
*          is scaled to be O(1), so THRESH should be a reasonably
*          small multiple of 1, e.g., 10 or 100.  In particular,
*          it should not depend on the precision (single vs. double)
*          or the size of the matrix.  It must be at least zero.
*
*  ORDER    (global input) INTEGER
*           Number of reflectors used in test matrix creation.
*           If ORDER is large, it will
*           take more time to create the test matrices but they will
*           be closer to random.
*           ORDER .lt. N not implemented
*
*  ABSTOL   (global input) DOUBLE PRECISION
*           For the purposes of this test, ABSTOL=0.0 is fine.
*           THis test does not test for high relative accuracy.
*
*  ISEED   (global input/output) INTEGER array, dimension (4)
*          On entry, the seed of the random number generator; the array
*          elements must be between 0 and 4095, and ISEED(4) must be
*          odd.
*          On exit, the seed is updated.
*
*  A       (local workspace) COMPLEX*16       array, dim (N*N)
*          global dimension (N, N), local dimension (LDA, NQ)
*          The test matrix, which is then overwritten.
*          A is distributed in a block cyclic manner over both rows
*          and columns.  The actual location of a particular element
*          in A is controlled by the values of NPROW, NPCOL, and NB.
*
*  COPYA   (local workspace) COMPLEX*16       array, dim (N, N)
*          COPYA is used to hold an identical copy of the array A
*          identical in both form and content to A
*
*  Z       (local workspace) COMPLEX*16       array, dim (N*N)
*          Z is distributed in the same manner as A
*          Z is used as workspace by the test routines
*          PZSEPCHK and PZSEPQTQ
*
*  W       (local workspace) DOUBLE PRECISION array, dimension (N)
*          On normal exit, the first M entries
*          contain the selected eigenvalues in ascending order.
*
*  IFAIL   (global workspace) INTEGER array, dimension (N)
*          Not used, only for backward compatibility
*
*  WORK    (local workspace) COMPLEX*16       array, dimension (LWORK)
*
*  LWORK   (local input) INTEGER
*          The length of the array WORK.  LWORK >= SIZETST as
*          returned by PZLASIZESEPR
*
*  RWORK   (local workspace) DOUBLE PRECISION array, dimension (LRWORK)
*
*  LRWORK  (local input) INTEGER
*          The length of the array WORK.  LRWORK >= RSIZETST as
*          returned by P@(CRPF)LASIZESEPR
*
*  IWORK   (local workspace) INTEGER array, dimension (LIWORK)
*
*  LIWORK  (local input) INTEGER
*          The length of the array IWORK.  LIWORK >= ISIZETST as
*          returned by PZLASIZESEPR
*
*  HETERO (input) INTEGER
*
*  NOUT   (local input) INTEGER
*         The unit number for output file.  Only used on node 0.
*         NOUT = 6, output to screen,
*         NOUT = 0, output to stderr.
*         NOUT = 13, output to file, divide thresh by 10.0
*         NOUT = 14, output to file, divide thresh by 20.0
*         (This hack allows us to test more stringently internally
*         so that when errors on found on other computers they will
*         be serious enough to warrant our attention.)
*
*  INFO (global output) INTEGER
*         -3       This process is not involved
*         0        Test succeeded (passed |AQ -QL| and |QT*Q - I| tests)
*         1        At least one test failed
*         2        Residual test were not performed, thresh <= 0.0
*         3        Test was skipped because of inadequate memory space
*
*     .. Parameters ..
      INTEGER            CTXT_, MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( CTXT_ = 2, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   HALF, ONE, TEN, ZERO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
     $                     TEN = 10.0D0, HALF = 0.5D0 )
      COMPLEX*16         PADVAL
      PARAMETER          ( PADVAL = ( 19.25D0, 1.1D1 ) )
      COMPLEX*16               ZZERO
      PARAMETER          ( ZZERO = ( 0.0D0, 0.0D0 ) )
      COMPLEX*16               ZONE
      PARAMETER          ( ZONE = ( 1.0D0, 0.0D0 ) )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 22 )
*     ..
*
*     .. Local Scalars ..
      LOGICAL            WKNOWN
      CHARACTER          JOBZ, RANGE
      CHARACTER*14       PASSED
      INTEGER            CONTEXT, I, IAM, IHETERO, IINFO, IL, IMODE, IN,
     $                   INDD, INDWORK, ISIZESUBTST, ISIZEEVR,
     $                   ISIZETST, ITYPE, IU, J, LLWORK, LEVRSIZE,
     $                   MAXSIZE, MYCOL, MYROW, NB, NGEN, NLOC,
     $                   NNODES, NP, NPCOL, NPROW, NQ, RES, SIZECHK, 
     $                   SIZEMQRLEFT, SIZEMQRRIGHT, SIZEQRF, SIZEQTQ, 
     $                   SIZESUBTST, SIZEEVR, SIZETMS,
     $                   SIZETST, VALSIZE, VECSIZE
      INTEGER            INDRWORK, LLRWORK, RSIZEEVR, RSIZESUBTST,
     $                   RSIZETST
      DOUBLE PRECISION   ANINV, ANORM, COND, MAXQTQNRM, MAXTSTNRM, OVFL, 
     $                   QTQNRM, RTOVFL, RTUNFL, TEMP1, TSTNRM, ULP, 
     $                   ULPINV, UNFL, VL, VU
*     ..
*     .. Local Arrays ..
      INTEGER            ISEEDIN( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
     $                   KTYPE( MAXTYP )
      DOUBLE PRECISION   CTIME( 10 ), WTIME( 10 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      DOUBLE PRECISION   DLARAN, PDLAMCH
      EXTERNAL           DLARAN, LSAME, NUMROC, PDLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, BLACS_PINFO, DLABAD, DLASRT,
     $                   IGAMX2D, IGEBR2D, IGEBS2D, PZCHEKPAD, PZELSET,
     $                   PZFILLPAD, PZLASET, PZLASIZEHEEVR,
     $                   PZLASIZESEPR, PZLATMS, PZMATGEN, PZSEPRSUBTST,
     $                   SLCOMBINE, ZLATMS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
     $                   8, 8, 9, 9, 9, 9, 9, 10, 11 /
      DATA               KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
     $                   2, 3, 1, 1, 1, 2, 3, 1, 1 /
      DATA               KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
     $                   0, 0, 4, 3, 1, 4, 4, 3, 0 /
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      PASSED = 'PASSED   EVR'
      CONTEXT = DESCA( CTXT_ )
      NB = DESCA( NB_ )
*
      CALL BLACS_PINFO( IAM, NNODES )
      CALL BLACS_GRIDINFO( CONTEXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Distribute HETERO across processes
*
      IF( IAM.EQ.0 ) THEN
         IF( LSAME( HETERO, 'Y' ) ) THEN
            IHETERO = 2
         ELSE
            IHETERO = 1
         END IF
         CALL IGEBS2D( CONTEXT, 'All', ' ', 1, 1, IHETERO, 1 )
      ELSE
         CALL IGEBR2D( CONTEXT, 'All', ' ', 1, 1, IHETERO, 1, 0, 0 )
      END IF
      IF( IHETERO.EQ.2 ) THEN
         HETERO = 'Y'
      ELSE
         HETERO = 'N'
      END IF
*      
*     Make sure that there is enough memory
*
      CALL PZLASIZESEPR( DESCA, IPREPAD, IPOSTPAD, SIZEMQRLEFT,
     $                   SIZEMQRRIGHT, SIZEQRF, SIZETMS, SIZEQTQ,
     $                   SIZECHK, SIZEEVR, RSIZEEVR, ISIZEEVR,
     $                   SIZESUBTST, RSIZESUBTST,
     $                   ISIZESUBTST, SIZETST, RSIZETST, ISIZETST )
      IF( LRWORK.LT.RSIZETST ) THEN
         INFO = 3
      END IF
*
      CALL IGAMX2D( CONTEXT, 'a', ' ', 1, 1, INFO, 1, 1, 1, -1, -1, 0 )
*
      IF( INFO.EQ.0 ) THEN
*
         INDD = 1
         INDRWORK = INDD + N
         INDWORK = 1
         LLWORK = LWORK - INDWORK + 1
         LLRWORK = LRWORK - INDRWORK + 1
*
         ULP = PDLAMCH( CONTEXT, 'P' )
         ULPINV = ONE / ULP
         UNFL = PDLAMCH( CONTEXT, 'Safe min' )
         OVFL = ONE / UNFL
         CALL DLABAD( UNFL, OVFL )
         RTUNFL = SQRT( UNFL )
         RTOVFL = SQRT( OVFL )
         ANINV = ONE / DBLE( MAX( 1, N ) )
*
*     This ensures that everyone starts out with the same seed.
*
         IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
            CALL IGEBS2D( CONTEXT, 'a', ' ', 4, 1, ISEED, 4 )
         ELSE
            CALL IGEBR2D( CONTEXT, 'a', ' ', 4, 1, ISEED, 4, 0, 0 )
         END IF
         ISEEDIN( 1 ) = ISEED( 1 )
         ISEEDIN( 2 ) = ISEED( 2 )
         ISEEDIN( 3 ) = ISEED( 3 )
         ISEEDIN( 4 ) = ISEED( 4 )
*
*     Compute the matrix A
*
*     Control parameters:
*
*     KMAGN  KMODE        KTYPE
*     =1  O(1)   clustered 1  zero
*     =2  large  clustered 2  identity
*     =3  small  exponential  (none)
*     =4         arithmetic   diagonal, (w/ eigenvalues)
*     =5         random log   Hermitian, w/ eigenvalues
*     =6         random       (none)
*     =7                      random diagonal
*     =8                      random Hermitian
*     =9                      positive definite
*     =10                     block diagonal with tridiagonal blocks
*     =11                     Geometrically sized clusters.
*
         ITYPE = KTYPE( MATTYPE )
         IMODE = KMODE( MATTYPE )
*
*     Compute norm
*
         GO TO ( 10, 20, 30 )KMAGN( MATTYPE )
*
   10    CONTINUE
         ANORM = ONE
         GO TO 40
*
   20    CONTINUE
         ANORM = ( RTOVFL*ULP )*ANINV
         GO TO 40
*
   30    CONTINUE
         ANORM = RTUNFL*N*ULPINV
         GO TO 40
*
   40    CONTINUE
         IF( MATTYPE.LE.15 ) THEN
            COND = ULPINV
         ELSE
            COND = ULPINV*ANINV / TEN
         END IF
*
*        Special Matrices
*
         IF( ITYPE.EQ.1 ) THEN
*
*          Zero Matrix
*
            DO 50 I = 1, N
               RWORK( INDD+I-1 ) = ZERO
   50       CONTINUE
            CALL PZLASET( 'All', N, N,ZZERO,ZZERO, COPYA, 1, 1, DESCA )
            WKNOWN = .TRUE.
*
         ELSE IF( ITYPE.EQ.2 ) THEN
*
*           Identity Matrix
*
            DO 60 I = 1, N
               RWORK( INDD+I-1 ) = ONE
   60       CONTINUE
            CALL PZLASET( 'All', N, N,ZZERO,ZONE, COPYA, 1, 1, DESCA )
            WKNOWN = .TRUE.
*
         ELSE IF( ITYPE.EQ.4 ) THEN
*
*           Diagonal Matrix, [Eigen]values Specified
*
            CALL PZFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
     $                      SIZETMS, IPREPAD, IPOSTPAD, PADVAL+1.0D0 )
*
           CALL PZLATMS( N, N, 'S', ISEED, 'S',RWORK( INDD ), IMODE,
     $                    COND, ANORM, 0, 0, 'N', COPYA, 1, 1, DESCA,
     $                    ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
     $                    IINFO )
            WKNOWN = .TRUE.
*
            CALL PZCHEKPAD( DESCA( CTXT_ ), 'PZLATMS1-WORK', SIZETMS, 1,
     $                      WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
     $                      PADVAL+1.0D0 )
*
         ELSE IF( ITYPE.EQ.5 ) THEN
*
*           Hermitian, eigenvalues specified
*
            CALL PZFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
     $                      SIZETMS, IPREPAD, IPOSTPAD, PADVAL+2.0D0 )
*
            CALL PZLATMS( N, N, 'S', ISEED, 'S',RWORK( INDD ), IMODE,
     $                    COND, ANORM, N, N, 'N', COPYA, 1, 1, DESCA,
     $                    ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
     $                    IINFO )
*
            CALL PZCHEKPAD( DESCA( CTXT_ ), 'PZLATMS2-WORK', SIZETMS, 1,
     $                      WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
     $                      PADVAL+2.0D0 )
*
            WKNOWN = .TRUE.
*
         ELSE IF( ITYPE.EQ.8 ) THEN
*
*           Hermitian, random eigenvalues
*
            NP = NUMROC( N, DESCA( MB_ ), MYROW, 0, NPROW )
            NQ = NUMROC( N, DESCA( NB_ ), MYCOL, 0, NPCOL )
            CALL PZMATGEN( DESCA( CTXT_ ), 'H', 'N', N, N, DESCA( MB_ ),
     $                     DESCA( NB_ ), COPYA, DESCA( LLD_ ),
     $                     DESCA( RSRC_ ), DESCA( CSRC_ ), ISEED( 1 ),
     $                     0, NP, 0, NQ, MYROW, MYCOL, NPROW, NPCOL )
            INFO = 0
            WKNOWN = .FALSE.
*
         ELSE IF( ITYPE.EQ.9 ) THEN
*
*           Positive definite, eigenvalues specified.
*
            CALL PZFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
     $                      SIZETMS, IPREPAD, IPOSTPAD, PADVAL+3.0D0 )
*
            CALL PZLATMS( N, N, 'S', ISEED, 'S',RWORK( INDD ), IMODE,
     $                    COND, ANORM, N, N, 'N', COPYA, 1, 1, DESCA,
     $                    ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
     $                    IINFO )
*
            WKNOWN = .TRUE.
*
            CALL PZCHEKPAD( DESCA( CTXT_ ), 'PZLATMS3-WORK', SIZETMS, 1,
     $                      WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
     $                      PADVAL+3.0D0 )
*
         ELSE IF( ITYPE.EQ.10 ) THEN
*
*           Block diagonal matrix with each block being a positive
*           definite tridiagonal submatrix.
*
            CALL PZLASET( 'All', N, N,ZZERO,ZZERO, COPYA, 1, 1, DESCA )
            NP = NUMROC( N, DESCA( MB_ ), 0, 0, NPROW )
            NQ = NUMROC( N, DESCA( NB_ ), 0, 0, NPCOL )
            NLOC = MIN( NP, NQ )
            NGEN = 0
   70       CONTINUE
*
            IF( NGEN.LT.N ) THEN
               IN = MIN( 1+INT( DLARAN( ISEED )*DBLE( NLOC ) ), N-NGEN )
*
              CALL ZLATMS( IN, IN, 'S', ISEED, 'P',RWORK( INDD ),
     $                      IMODE, COND, ANORM, 1, 1, 'N', A, LDA,
     $                      WORK( INDWORK ), IINFO )
*
               DO 80 I = 2, IN
                  TEMP1 = ABS( A( I-1, I ) ) /
     $                    SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
                  IF( TEMP1.GT.HALF ) THEN
                     A( I-1, I ) = HALF*SQRT( ABS( A( I-1, I-1 )*A( I,
     $                             I ) ) )
                     A( I, I-1 ) = A( I-1, I )
                  END IF
   80          CONTINUE
               CALL PZELSET( COPYA, NGEN+1, NGEN+1, DESCA, A( 1, 1 ) )
               DO 90 I = 2, IN
                  CALL PZELSET( COPYA, NGEN+I, NGEN+I, DESCA,
     $                          A( I, I ) )
                  CALL PZELSET( COPYA, NGEN+I-1, NGEN+I, DESCA,
     $                          A( I-1, I ) )
                  CALL PZELSET( COPYA, NGEN+I, NGEN+I-1, DESCA,
     $                          A( I, I-1 ) )
   90          CONTINUE
               NGEN = NGEN + IN
               GO TO 70
            END IF
            WKNOWN = .FALSE.
*
         ELSE IF( ITYPE.EQ.11 ) THEN
*
*           Geometrically sized clusters.  Eigenvalues:  0,1,1,2,2,2,2,...
*
            NGEN = 0
            J = 1
            TEMP1 = ZERO
  100       CONTINUE
            IF( NGEN.LT.N ) THEN
               IN = MIN( J, N-NGEN )
               DO 110 I = 0, IN - 1
                  RWORK( INDD+NGEN+I ) = TEMP1
  110          CONTINUE
               TEMP1 = TEMP1 + ONE
               J = 2*J
               NGEN = NGEN + IN
               GO TO 100
            END IF
*
            CALL PZFILLPAD( DESCA( CTXT_ ), SIZETMS, 1, WORK( INDWORK ),
     $                      SIZETMS, IPREPAD, IPOSTPAD, PADVAL+4.0D0 )
*
            CALL PZLATMS( N, N, 'S', ISEED, 'S',RWORK( INDD ), IMODE,
     $                    COND, ANORM, 0, 0, 'N', COPYA, 1, 1, DESCA,
     $                    ORDER, WORK( INDWORK+IPREPAD ), SIZETMS,
     $                    IINFO )
*
            CALL PZCHEKPAD( DESCA( CTXT_ ), 'PZLATMS4-WORK', SIZETMS, 1,
     $                      WORK( INDWORK ), SIZETMS, IPREPAD, IPOSTPAD,
     $                      PADVAL+4.0D0 )
*
         ELSE
            IINFO = 1
         END IF
*
         IF( WKNOWN )
     $      CALL DLASRT( 'I', N,RWORK( INDD ), IINFO )
*
         CALL PZLASIZEHEEVR( WKNOWN, 'A', N, DESCA, VL, VU, IL, IU,
     $                       ISEED,RWORK( INDD ), MAXSIZE, VECSIZE,
     $                       VALSIZE )
         LEVRSIZE = MIN( MAXSIZE, LLRWORK )
*
         CALL PZSEPRSUBTST( WKNOWN, 'v', 'a', UPLO, N, VL, VU, IL, IU,
     $                      THRESH, ABSTOL, A, COPYA, Z, 1, 1, DESCA,
     $                      RWORK( INDD ), WIN, IFAIL, ICLUSTR, GAP,
     $                      IPREPAD, IPOSTPAD, WORK( INDWORK ), LLWORK,
     $                      RWORK( INDRWORK ), LLRWORK,
     $                      LEVRSIZE, IWORK, ISIZEEVR, RES, TSTNRM,
     $                      QTQNRM, NOUT )
*
         MAXTSTNRM = TSTNRM
         MAXQTQNRM = QTQNRM
*
         IF( THRESH.LE.ZERO ) THEN
            PASSED = 'SKIPPED       '
            INFO = 2
         ELSE IF( RES.NE.0 ) THEN
            PASSED = 'FAILED        '
            INFO = 1
         END IF
      END IF
*
      IF( THRESH.GT.ZERO .AND. LSAME( SUBTESTS, 'Y' ) ) THEN
*
*        Subtest 1:  JOBZ = 'N', RANGE = 'A', minimum memory
*
         IF( INFO.EQ.0 ) THEN
*
            JOBZ = 'N'
            RANGE = 'A'
            CALL PZLASIZEHEEVR( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
     $                          ISEED, WIN( 1+IPREPAD ), MAXSIZE,
     $                          VECSIZE, VALSIZE )
*
            LEVRSIZE = VALSIZE
*
            CALL PZSEPRSUBTST( .TRUE., JOBZ, RANGE, UPLO, N, VL, VU, IL,
     $                         IU, THRESH, ABSTOL, A, COPYA, Z, 1, 1,
     $                         DESCA, WIN( 1+IPREPAD ), WNEW, IFAIL,
     $                         ICLUSTR, GAP, IPREPAD, IPOSTPAD,
     $                         WORK( INDWORK ), LLWORK, 
     $                         RWORK, LRWORK, LEVRSIZE,
     $                         IWORK, ISIZEEVR, RES, TSTNRM, QTQNRM,
     $                         NOUT )
*
            IF( RES.NE.0 ) THEN
               MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
               MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
               PASSED = 'FAILED stest 1'
               INFO = 1
            END IF
         END IF
*
*        Subtest 2:  JOBZ = 'N', RANGE = 'I', minimum memory
*
         IF( INFO.EQ.0 ) THEN
*
            IL = -1
            IU = -1
            JOBZ = 'N'
            RANGE = 'I'
*
*           Use PZLASIZEHEEVR to choose IL and IU.
*
            CALL PZLASIZEHEEVR( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
     $                          ISEED, WIN( 1+IPREPAD ), MAXSIZE,
     $                          VECSIZE, VALSIZE )
*
            LEVRSIZE = VALSIZE
*
            CALL PZSEPRSUBTST( .TRUE., JOBZ, RANGE, UPLO, N, VL, VU, IL,
     $                         IU, THRESH, ABSTOL, A, COPYA, Z, 1, 1,
     $                         DESCA, WIN( 1+IPREPAD ), WNEW, IFAIL,
     $                         ICLUSTR, GAP, IPREPAD, IPOSTPAD,
     $                         WORK( INDWORK ), LLWORK, 
     $                         RWORK, LRWORK, LEVRSIZE,
     $                         IWORK, ISIZEEVR, RES, TSTNRM, QTQNRM,
     $                         NOUT )
*
            IF( RES.NE.0 ) THEN
               MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
               MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
               PASSED = 'FAILED stest 2'
               INFO = 1
            END IF
         END IF
*
*        Subtest 3:  JOBZ = 'V', RANGE = 'I', minimum memory
*
         IF( INFO.EQ.0 ) THEN
            IL = -1
            IU = -1
            JOBZ = 'V'
            RANGE = 'I'
*
*           We use PZLASIZEHEEVR to choose IL and IU for us.
*
            CALL PZLASIZEHEEVR( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
     $                          ISEED, WIN( 1+IPREPAD ), MAXSIZE,
     $                          VECSIZE, VALSIZE )
*
            LEVRSIZE = VECSIZE
*
            CALL PZSEPRSUBTST( .TRUE., JOBZ, RANGE, UPLO, N, VL, VU, IL,
     $                         IU, THRESH, ABSTOL, A, COPYA, Z, 1, 1,
     $                         DESCA, WIN( 1+IPREPAD ), WNEW, IFAIL,
     $                         ICLUSTR, GAP, IPREPAD, IPOSTPAD,
     $                         WORK( INDWORK ), LLWORK, 
     $                         RWORK, LRWORK, LEVRSIZE,
     $                         IWORK, ISIZEEVR, RES, TSTNRM, QTQNRM,
     $                         NOUT )
*
            IF( RES.NE.0 ) THEN
               MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
               MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
               PASSED = 'FAILED stest 3'
               INFO = 1
            END IF
         END IF
*
*        Subtest 4:  JOBZ = 'N', RANGE = 'V', minimum memory
*
         IF( INFO.EQ.0 ) THEN
            VL = ONE
            VU = -ONE
            JOBZ = 'N'
            RANGE = 'V'
*
*           We use PZLASIZEHEEVR to choose IL and IU for us.
*
            CALL PZLASIZEHEEVR( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
     $                          ISEED, WIN( 1+IPREPAD ), MAXSIZE,
     $                          VECSIZE, VALSIZE )
*
            LEVRSIZE = VALSIZE
*
            CALL PZSEPRSUBTST( .TRUE., JOBZ, RANGE, UPLO, N, VL, VU, IL,
     $                         IU, THRESH, ABSTOL, A, COPYA, Z, 1, 1,
     $                         DESCA, WIN( 1+IPREPAD ), WNEW, IFAIL,
     $                         ICLUSTR, GAP, IPREPAD, IPOSTPAD,
     $                         WORK( INDWORK ), LLWORK, 
     $                         RWORK, LRWORK, LEVRSIZE,
     $                         IWORK, ISIZEEVR, RES, TSTNRM, QTQNRM,
     $                         NOUT )
*
            IF( RES.NE.0 ) THEN
               MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
               MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
               PASSED = 'FAILED stest 4'
               INFO = 1
            END IF
         END IF
*
*        Subtest 5:  JOBZ = 'V', RANGE = 'V', minimum memory
*
         IF( INFO.EQ.0 ) THEN
            VL = ONE
            VU = -ONE
            JOBZ = 'V'
            RANGE = 'V'
*
*           We use PZLASIZEHEEVR to choose VL and VU for us.
*
            CALL PZLASIZEHEEVR( .TRUE., RANGE, N, DESCA, VL, VU, IL, IU,
     $                          ISEED, WIN( 1+IPREPAD ), MAXSIZE,
     $                          VECSIZE, VALSIZE )
*
            LEVRSIZE = VECSIZE
*
            CALL PZSEPRSUBTST( .TRUE., JOBZ, RANGE, UPLO, N, VL, VU, IL,
     $                         IU, THRESH, ABSTOL, A, COPYA, Z, 1, 1,
     $                         DESCA, WIN( 1+IPREPAD ), WNEW, IFAIL,
     $                         ICLUSTR, GAP, IPREPAD, IPOSTPAD,
     $                         WORK( INDWORK ), LLWORK, 
     $                         RWORK, LRWORK, LEVRSIZE,
     $                         IWORK, ISIZEEVR, RES, TSTNRM, QTQNRM,
     $                         NOUT )
*
            IF( RES.NE.0 ) THEN
               MAXTSTNRM = MAX( TSTNRM, MAXTSTNRM )
               MAXQTQNRM = MAX( QTQNRM, MAXQTQNRM )
               PASSED = 'FAILED stest 5'
               INFO = 1
            END IF
         END IF
      END IF
*
      CALL IGAMX2D( CONTEXT, 'All', ' ', 1, 1, INFO, 1, -1, -1, -1, -1,
     $              -1 )
      IF( INFO.EQ.1 ) THEN
         IF( IAM.EQ.0 .AND. .FALSE. ) THEN
            WRITE( NOUT, FMT = 9994 )'C  '
            WRITE( NOUT, FMT = 9993 )ISEEDIN( 1 )
            WRITE( NOUT, FMT = 9992 )ISEEDIN( 2 )
            WRITE( NOUT, FMT = 9991 )ISEEDIN( 3 )
            WRITE( NOUT, FMT = 9990 )ISEEDIN( 4 )
            IF( LSAME( UPLO, 'L' ) ) THEN
               WRITE( NOUT, FMT = 9994 )'      UPLO= ''L'' '
            ELSE
               WRITE( NOUT, FMT = 9994 )'      UPLO= ''U'' '
            END IF
            IF( LSAME( SUBTESTS, 'Y' ) ) THEN
               WRITE( NOUT, FMT = 9994 )'      SUBTESTS= ''Y'' '
            ELSE
               WRITE( NOUT, FMT = 9994 )'      SUBTESTS= ''N'' '
            END IF
            WRITE( NOUT, FMT = 9989 )N
            WRITE( NOUT, FMT = 9988 )NPROW
            WRITE( NOUT, FMT = 9987 )NPCOL
            WRITE( NOUT, FMT = 9986 )NB
            WRITE( NOUT, FMT = 9985 )MATTYPE
            WRITE( NOUT, FMT = 9982 )ABSTOL
            WRITE( NOUT, FMT = 9981 )THRESH
            WRITE( NOUT, FMT = 9994 )'C  '
         END IF
      END IF
*
      CALL SLCOMBINE( CONTEXT, 'All', '>', 'W', 6, 1, WTIME )
      CALL SLCOMBINE( CONTEXT, 'All', '>', 'C', 6, 1, CTIME )
      IF( IAM.EQ.0 ) THEN
         IF( INFO.EQ.0 .OR. INFO.EQ.1 ) THEN
            IF( WTIME( 1 ).GE.0.0 ) THEN
               WRITE( NOUT, FMT = 9999 )N, NB, NPROW, NPCOL, MATTYPE,
     $            SUBTESTS, WTIME( 1 ), CTIME( 1 ), MAXTSTNRM,
     $            MAXQTQNRM, PASSED
            ELSE
               WRITE( NOUT, FMT = 9998 )N, NB, NPROW, NPCOL, MATTYPE,
     $            SUBTESTS, CTIME( 1 ), MAXTSTNRM, MAXQTQNRM, PASSED
            END IF
         ELSE IF( INFO.EQ.2 ) THEN
            IF( WTIME( 1 ).GE.0.0 ) THEN
               WRITE( NOUT, FMT = 9997 )N, NB, NPROW, NPCOL, MATTYPE,
     $            SUBTESTS, WTIME( 1 ), CTIME( 1 )
            ELSE
               WRITE( NOUT, FMT = 9996 )N, NB, NPROW, NPCOL, MATTYPE,
     $            SUBTESTS, CTIME( 1 )
            END IF
         ELSE IF( INFO.EQ.3 ) THEN
            WRITE( NOUT, FMT = 9995 )N, NB, NPROW, NPCOL, MATTYPE,
     $         SUBTESTS
         END IF
C         WRITE(*,*)'************************************************'
      END IF
*

      RETURN
 9999 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, A1, 1X,
     $      F8.2, 1X, F8.2, 1X, G9.2, 1X, G9.2, 1X, A14 )
 9998 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, A1, 1X, 8X,
     $      1X, F8.2, 1X, G9.2, 1X, G9.2, A14 )
 9997 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, A1, 1X, F8.2,
     $      1X, F8.2, 21X, 'Bypassed' )
 9996 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, A1, 1X, 8X,
     $      1X, F8.2, 21X, 'Bypassed' )
 9995 FORMAT( 1X, I5, 1X, I3, 1X, I3, 1X, I3, 1X, I3, 3X, A1, 32X,
     $      'Bad MEMORY parameters' )
 9994 FORMAT( A )
 9993 FORMAT( '      ISEED( 1 ) =', I8 )
 9992 FORMAT( '      ISEED( 2 ) =', I8 )
 9991 FORMAT( '      ISEED( 3 ) =', I8 )
 9990 FORMAT( '      ISEED( 4 ) =', I8 )
 9989 FORMAT( '      N=', I8 )
 9988 FORMAT( '      NPROW=', I8 )
 9987 FORMAT( '      NPCOL=', I8 )
 9986 FORMAT( '      NB=', I8 )
 9985 FORMAT( '      MATTYPE=', I8 )
C 9984 FORMAT( '      IBTYPE=', I8 )
C 9983 FORMAT( '      SUBTESTS=', A1 )
 9982 FORMAT( '      ABSTOL=', D16.6 )
 9981 FORMAT( '      THRESH=', D16.6 )
C 9980 FORMAT( ' Increase TOTMEM in PZSEPRDRIVER' )
*
*     End of PZSEPRTST
*
      END