1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
SUBROUTINE PCDTLASCHK( SYMM, UPLO, TRANS, N, BWL, BWU, NRHS, X,
$ IX, JX, DESCX, IASEED, A, IA, JA, DESCA,
$ IBSEED, ANORM, RESID, WORK, WORKSIZ )
*
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
CHARACTER SYMM, TRANS, UPLO
INTEGER BWL, BWU, IA, IASEED, IBSEED,
$ IX, JA, JX, N, NRHS, WORKSIZ
REAL ANORM, RESID
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCX( * )
COMPLEX A( * ), WORK( * ), X( * )
* .. External Functions ..
LOGICAL LSAME
* ..
*
* Purpose
* =======
*
* PCDTLASCHK computes the residual
* || sub( A )*sub( X ) - B || / (|| sub( A ) ||*|| sub( X ) ||*eps*N)
* to check the accuracy of the factorization and solve steps in the
* LU and Cholesky decompositions, where sub( A ) denotes
* A(IA:IA+N-1,JA,JA+N-1), sub( X ) denotes X(IX:IX+N-1, JX:JX+NRHS-1).
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* SYMM (global input) CHARACTER
* if SYMM = 'H', sub( A ) is a hermitian distributed band
* matrix, otherwise sub( A ) is a general distributed matrix.
*
* UPLO (global input) CHARACTER
* if SYMM = 'H', then
* if UPLO = 'L', the lower half of the matrix is stored
* if UPLO = 'U', the upper half of the matrix is stored
* if SYMM != 'S' or 'H', then
* if UPLO = 'D', the matrix is stable during factorization
* without interchanges
* if UPLO != 'D', the matrix is general
*
* TRANS if TRANS= 'C', A 'Conjugate transpose' is used as the
* coefficient matrix in the solve.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* NRHS (global input) INTEGER
* The number of right-hand-sides, i.e the number of columns
* of the distributed matrix sub( X ). NRHS >= 1.
*
* X (local input) COMPLEX pointer into the local memory
* to an array of dimension (LLD_X,LOCq(JX+NRHS-1). This array
* contains the local pieces of the answer vector(s) sub( X ) of
* sub( A ) sub( X ) - B, split up over a column of processes.
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* IASEED (global input) INTEGER
* The seed number to generate the original matrix Ao.
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* IBSEED (global input) INTEGER
* The seed number to generate the original matrix B.
*
* ANORM (global input) REAL
* The 1-norm or infinity norm of the distributed matrix
* sub( A ).
*
* RESID (global output) REAL
* The residual error:
* ||sub( A )*sub( X )-B|| / (||sub( A )||*||sub( X )||*eps*N).
*
* WORK (local workspace) COMPLEX array, dimension (LWORK)
* IF SYMM='S'
* LWORK >= max(5,NB)+2*NB
* IF SYMM!='S' or 'H'
* LWORK >= max(5,NB)+2*NB
*
* WORKSIZ (local input) size of WORK.
*
* =====================================================================
*
* Code Developer: Andrew J. Cleary, University of Tennessee.
* Current address: Lawrence Livermore National Labs.
* This version released: August, 2001.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
INTEGER INT_ONE
PARAMETER ( INT_ONE = 1 )
* ..
* .. Local Scalars ..
INTEGER IACOL, IAROW, ICTXT,
$ IIA, IIX, IPB, IPW,
$ IXCOL, IXROW, J, JJA, JJX, LDA,
$ MYCOL, MYROW, NB, NP, NPCOL, NPROW, NQ
INTEGER I, START
INTEGER BW, INFO, IPPRODUCT, WORK_MIN
REAL DIVISOR, EPS, RESID1, NORMX
* ..
* .. Local Arrays ..
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CGAMX2D, CGEMM, CGSUM2D,
$ CLASET, PBCTRAN, PCMATGEN, SGEBR2D,
$ SGEBS2D, SGERV2D, SGESD2D
* ..
* .. External Functions ..
INTEGER ICAMAX, NUMROC
REAL PSLAMCH
EXTERNAL ICAMAX, NUMROC, PSLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD, REAL
* ..
* .. Executable Statements ..
*
* Get needed initial parameters
*
ICTXT = DESCA( CTXT_ )
NB = DESCA( NB_ )
*
IF( LSAME( SYMM, 'H' ) ) THEN
BW = BWL
START = 1
WORK_MIN = MAX(5,NB)+2*NB
ELSE
BW = MAX(BWL, BWU)
IF( LSAME( UPLO, 'D' )) THEN
START = 1
ELSE
START = 2
ENDIF
WORK_MIN = MAX(5,NB)+2*NB
ENDIF
*
IF ( WORKSIZ .LT. WORK_MIN ) THEN
CALL PXERBLA( ICTXT, 'PCTLASCHK', -18 )
RETURN
END IF
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
EPS = PSLAMCH( ICTXT, 'eps' )
RESID = 0.0E+0
DIVISOR = ANORM * EPS * REAL( N )
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX, JJX,
$ IXROW, IXCOL )
NP = NUMROC( (3), DESCA( MB_ ), MYROW, 0, NPROW )
NQ = NUMROC( N, DESCA( NB_ ), MYCOL, 0, NPCOL )
*
IPB = 1
IPPRODUCT = 1 + DESCA( NB_ )
IPW = 1 + 2*DESCA( NB_ )
*
LDA = DESCA( LLD_ )
*
* Regenerate A
*
IF( LSAME( SYMM, 'H' )) THEN
CALL PCBMATGEN( ICTXT, UPLO, 'D', BW, BW, N, BW+1,
$ DESCA( NB_ ), A, DESCA( LLD_ ), 0, 0,
$ IASEED, MYROW, MYCOL, NPROW, NPCOL )
ELSE
*
CALL PCBMATGEN( ICTXT, 'N', UPLO, BWL, BWU, N,
$ DESCA( MB_ ), DESCA( NB_ ), A,
$ DESCA( LLD_ ), 0, 0, IASEED, MYROW,
$ MYCOL, NPROW, NPCOL )
ENDIF
*
* Matrix formed above has the diagonals shifted from what was
* input to the tridiagonal routine. Shift them back.
*
* Send elements to neighboring processors
*
IF( MYCOL.GT.0 ) THEN
CALL CGESD2D( ICTXT, 1, 1, A( START+2), LDA,
$ MYROW, MYCOL-1 )
ENDIF
*
IF( MYCOL.LT.NPCOL-1 ) THEN
CALL CGESD2D( ICTXT, 1, 1,
$ A( START+( DESCA( NB_ )-1 )*LDA ),
$ LDA, MYROW, MYCOL+1 )
ENDIF
*
* Shift local elements
*
DO 220 I=0,DESCA( NB_ )-1
A( START+2+(I)*LDA ) = A( START+2+(I+1)*LDA )
220 CONTINUE
*
DO 230 I=DESCA( NB_ )-1,0,-1
A( START+(I+1)*LDA ) = A( START+(I)*LDA )
230 CONTINUE
*
* Receive elements from neighboring processors
*
IF( MYCOL.LT.NPCOL-1 ) THEN
CALL CGERV2D( ICTXT, 1, 1,
$ A( START+2+( DESCA( NB_ )-1 )*LDA ),
$ LDA, MYROW, MYCOL+1 )
ENDIF
*
IF( MYCOL.GT.0 ) THEN
CALL CGERV2D( ICTXT, 1, 1, A( START), LDA,
$ MYROW, MYCOL-1 )
ENDIF
*
* Loop over the rhs
*
RESID = 0.0
*
DO 40 J = 1, NRHS
*
* Multiply A * current column of X
*
*
CALL PCGBDCMV( BWL+BWU+1, BWL, BWU, TRANS, N, A, 1, DESCA,
$ 1, X( 1 + (J-1)*DESCX( LLD_ )), 1, DESCX,
$ WORK( IPPRODUCT ), WORK( IPW ),
$ (INT_ONE+2)*INT_ONE, INFO )
*
*
* Regenerate column of B
*
CALL PCMATGEN( DESCX( CTXT_ ), 'No', 'No', DESCX( M_ ),
$ DESCX( N_ ), DESCX( MB_ ), DESCX( NB_ ),
$ WORK( IPB ), DESCX( LLD_ ), DESCX( RSRC_ ),
$ DESCX( CSRC_ ), IBSEED, 0, NQ, J-1, 1, MYCOL,
$ MYROW, NPCOL, NPROW )
*
* Figure || A * X - B || & || X ||
*
CALL PCAXPY( N, -ONE, WORK( IPPRODUCT ), 1, 1, DESCX, 1,
$ WORK( IPB ), 1, 1, DESCX, 1 )
*
CALL PSCNRM2( N, NORMX,
$ X, 1, J, DESCX, 1 )
*
CALL PSCNRM2( N, RESID1,
$ WORK( IPB ), 1, 1, DESCX, 1 )
*
*
* Calculate residual = ||Ax-b|| / (||x||*||A||*eps*N)
*
RESID1 = RESID1 / ( NORMX*DIVISOR )
*
RESID = MAX( RESID, RESID1 )
*
40 CONTINUE
*
RETURN
*
* End of PCTLASCHK
*
END
|