File: pcqrt14.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (361 lines) | stat: -rw-r--r-- 14,344 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
      REAL             FUNCTION PCQRT14( TRANS, M, N, NRHS, A, IA, JA,
     $                                   DESCA, X, IX, JX, DESCX, WORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IA, IX, JA, JX, M, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCX( * )
      COMPLEX            A( * ), WORK( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PCQRT14 checks whether sub( X ) is in the row space of sub( A ) or
*  sub( A )', where sub( A ) denotes A( IA:IA+M-1, JA:JA+N-1 ) and
*  sub( X ) denotes X( IX:IX+N-1, JX:JX+NRHS-1 ) if TRANS = 'N', and
*  X( IX:IX+N-1, JX:JX+NRHS-1 ) otherwise.  It does so by scaling both
*  sub( X ) and sub( A ) such that their norms are in the range
*  [sqrt(eps), 1/sqrt(eps)], then computing an LQ factorization of
*  [sub( A )',sub( X )]' (if TRANS = 'N') or a QR factorization of
*  [sub( A ),sub( X )] otherwise, and returning the norm of the trailing
*  triangle, scaled by MAX(M,N,NRHS)*eps.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  TRANS   (global input) CHARACTER*1
*          = 'N':  No transpose, check for sub( X ) in the row space of
*                  sub( A ),
*          = 'C':  Conjugate transpose, check for sub( X ) in row space
*                  of sub( A )'.
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed submatrix sub( X ). NRHS >= 0.
*
*  A       (local input) COMPLEX pointer into the local memory
*          to an array of dimension (LLD_A, LOCc(JA+N-1)). This array
*          contains the local pieces of the M-by-N distributed matrix
*          sub( A ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  X       (local input) COMPLEX pointer into the local
*          memory to an array of dimension (LLD_X,LOCc(JX+NRHS-1)).
*          On entry, this array contains the local pieces of the
*          N-by-NRHS distributed submatrix sub( X ) if TRANS = 'N',
*          and the M-by-NRHS distributed submatrix sub( X ) otherwise.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  WORK    (local workspace) COMPLEX array dimension (LWORK)
*          If TRANS='N', LWORK >= MNRHSP * NQ + LTAU + LWF and
*          LWORK >= MP * NNRHSQ + LTAU + LWF otherwise, where
*
*          IF TRANS='N', (LQ fact)
*            MNRHSP = NUMROC( M+NRHS+IROFFA, MB_A, MYROW, IAROW,
*                             NPROW )
*            LTAU   = NUMROC( IA+MIN( M+NRHS, N )-1, MB_A, MYROW,
*                             RSRC_A, NPROW )
*            LWF    = MB_A * ( MB_A + MNRHSP + NQ0 )
*          ELSE         (QR fact)
*            NNRHSQ = NUMROC( N+NRHS+ICOFFA, NB_A, MYCOL, IACOL,
*                             NPCOL )
*            LTAU   = NUMROC( JA+MIN( M, N+NRHS )-1, NB_A, MYCOL,
*                             CSRC_A, NPCOL )
*            LWF    = NB_A * ( NB_A + MP0 + NNRHSQ )
*          END IF
*
*          and,
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          MP0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          NQ0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ).
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE, ZERO
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            TPSD
      INTEGER            IACOL, IAROW, ICOFFA, ICTXT, IDUM, IIA, INFO,
     $                   IPTAU, IPW, IPWA, IROFFA, IWA, IWX, J, JJA,
     $                   JWA, JWX, LDW, LWORK, MPWA, MPW, MQW, MYCOL,
     $                   MYROW, NPCOL, NPROW, NPW, NQWA, NQW
      REAL               ANRM, ERR, XNRM
      COMPLEX            AMAX
*     ..
*     .. Local Arrays ..
      INTEGER            DESCW( DLEN_ ), IDUM1( 1 ), IDUM2( 1 )
      REAL               RWORK( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      REAL               PCLANGE, PSLAMCH
      EXTERNAL           LSAME, NUMROC, PCLANGE, PSLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, INFOG2L, PCMAX1,
     $                   PCCOPY, PCGELQF, PCGEQRF, PCLACGV,
     $                   PCLACPY, PCLASCL, PXERBLA, SGAMX2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD, REAL
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      PCQRT14 = ZERO
*
      IPWA = 1
      IROFFA = MOD( IA-1, DESCA( MB_ ) )
      ICOFFA = MOD( JA-1, DESCA( NB_ ) )
      IWA = IROFFA + 1
      JWA = ICOFFA + 1
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA,
     $              JJA, IAROW, IACOL )
      MPWA = NUMROC( M+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQWA = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
*
      INFO = 0
      IF( LSAME( TRANS, 'N' ) ) THEN
         IF( N.LE.0 .OR. NRHS.LE.0 )
     $      RETURN
         TPSD = .FALSE.
         MPW = NUMROC( M+NRHS+IROFFA, DESCA( MB_ ), MYROW, IAROW,
     $                 NPROW )
         NQW = NQWA
*
*        Assign descriptor DESCW for workspace WORK and pointers to
*        matrices sub( A ) and sub( X ) in workspace
*
         IWX = IWA + M
         JWX = JWA
         LDW = MAX( 1, MPW )
         CALL DESCSET( DESCW, M+NRHS+IROFFA, N+ICOFFA, DESCA( MB_ ),
     $                 DESCA( NB_ ), IAROW, IACOL, ICTXT, LDW )
*
      ELSE IF( LSAME( TRANS, 'C' ) ) THEN
         IF( M.LE.0 .OR. NRHS.LE.0 )
     $      RETURN
         TPSD = .TRUE.
         MPW = MPWA
         NQW = NUMROC( N+NRHS+ICOFFA, DESCA( NB_ ), MYCOL, IACOL,
     $                 NPCOL )
*
*        Assign descriptor DESCW for workspace WORK and pointers to
*        matrices sub( A ) and sub( X ) in workspace
*
         IWX = IWA
         JWX = JWA + N
         LDW = MAX( 1, MPW )
         CALL DESCSET( DESCW, M+IROFFA, N+NRHS+ICOFFA, DESCA( MB_ ),
     $                 DESCA( NB_ ), IAROW, IACOL, ICTXT, LDW )
      ELSE
         CALL PXERBLA( ICTXT, 'PCQRT14', -1 )
         RETURN
      END IF
*
*     Copy and scale sub( A )
*
      IPTAU = IPWA + MPW*NQW
      CALL PCLACPY( 'All', M, N, A, IA, JA, DESCA, WORK( IPWA ), IWA,
     $              JWA, DESCW )
      RWORK( 1 ) = ZERO
      ANRM = PCLANGE( 'M', M, N, WORK( IPWA ), IWA, JWA, DESCW, RWORK )
      IF( ANRM.NE.ZERO )
     $   CALL PCLASCL( 'G', ANRM, ONE, M, N, WORK( IPWA ), IWA,
     $                 JWA, DESCW, INFO )
*
*     Copy sub( X ) or sub( X )' into the right place and scale it
*
      IF( TPSD ) THEN
*
*        Copy sub( X ) into columns jwa+n:jwa+n+nrhs-1 of work
*
         DO 10 J = 1, NRHS
            CALL PCCOPY( M, X, IX, JX+J-1, DESCX, 1, WORK( IPWA ), IWX,
     $                   JWX+J-1, DESCW, 1 )
   10    CONTINUE
         XNRM = PCLANGE( 'M', M, NRHS, WORK( IPWA ), IWX, JWX, DESCW,
     $                   RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL PCLASCL( 'G', XNRM, ONE, M, NRHS, WORK( IPWA ), IWX,
     $                    JWX, DESCW, INFO )
*
*        Compute QR factorization of work(iwa:iwa+m-1,jwa:jwa+n+nrhs-1)
*
         MQW = NUMROC( M+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
         IPW = IPTAU + MIN( MQW, NQW )
         LWORK = DESCW( NB_ ) * ( MPW + NQW + DESCW( NB_ ) )
         CALL PCGEQRF( M, N+NRHS, WORK( IPWA ), IWA, JWA, DESCW,
     $                WORK( IPTAU ), WORK( IPW ), LWORK, INFO )
*
*        Compute largest entry in upper triangle of
*        work(iwa+n:iwa+m-1,jwa+n:jwa+n+nrhs-1)
*
         ERR = ZERO
         IF( N.LT.M ) THEN
            DO 20 J = JWX, JWA+N+NRHS-1
               CALL PCMAX1( MIN(M-N,J-JWX+1), AMAX, IDUM, WORK( IPWA ),
     $                      IWA+N, J, DESCW, 1 )
               ERR = MAX( ERR, ABS( AMAX ) )
   20       CONTINUE
         END IF
         CALL SGAMX2D( ICTXT, 'All', ' ', 1, 1, ERR, 1, IDUM1, IDUM2,
     $                 -1, -1, 0 )
*
      ELSE
*
*        Copy sub( X )' into rows iwa+m:iwa+m+nrhs-1 of work
*
         DO 30 J = 1, NRHS
            CALL PCCOPY( N, X, IX, JX+J-1, DESCX, 1, WORK( IPWA ),
     $                   IWX+J-1, JWX, DESCW, DESCW( M_ ) )
            CALL PCLACGV( N, WORK( IPWA ), IWX+J-1, JWX, DESCW,
     $                    DESCW( M_ ) )
   30    CONTINUE
*
         XNRM = PCLANGE( 'M', NRHS, N, WORK( IPWA ), IWX, JWX, DESCW,
     $                   RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL PCLASCL( 'G', XNRM, ONE, NRHS, N, WORK( IPWA ), IWX,
     $                    JWX, DESCW, INFO )
*
*        Compute LQ factorization of work(iwa:iwa+m+nrhs-1,jwa:jwa+n-1)
*
         NPW = NUMROC( N+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
         IPW = IPTAU + MIN( MPW, NPW )
         LWORK = DESCW( MB_ ) * ( MPW + NQW + DESCW( MB_ ) )
         CALL PCGELQF( M+NRHS, N, WORK( IPWA ), IWA, JWA, DESCW,
     $                 WORK( IPTAU ), WORK( IPW ), LWORK, INFO )
*
*        Compute largest entry in lower triangle in
*        work(iwa+m:iwa+m+nrhs-1,jwa+m:jwa+n-1)
*
         ERR = ZERO
         DO 40 J = JWA+M, MIN( JWA+N-1, JWA+M+NRHS-1 )
            CALL PCMAX1( JWA+M+NRHS-J, AMAX, IDUM, WORK( IPWA ),
     $                   IWX+J-JWA-M, J, DESCW, 1 )
            ERR = MAX( ERR, ABS( AMAX ) )
   40    CONTINUE
         CALL SGAMX2D( ICTXT, 'All', ' ', 1, 1, ERR, 1, IDUM1, IDUM2,
     $                 -1, -1, 0 )
*
      END IF
*
      PCQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) ) *
     $          PSLAMCH( ICTXT, 'Epsilon' ) )
*
      RETURN
*
*     End of PCQRT14
*
      END