File: pdqrdriver.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (1067 lines) | stat: -rw-r--r-- 42,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
      PROGRAM PDQRDRIVER
*
*  -- ScaLAPACK testing driver (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 28, 2001
*
*  Purpose
*  =======
*
*  PDQRDRIVER is the main test program for the DOUBLE PRECISION
*  SCALAPACK QR factorization routines. This test driver performs a QR
*  QL, LQ, RQ, QP (QR factorization with column pivoting) or TZ
*  (complete orthogonal factorization) factorization and checks the
*  results.
*
*  The program must be driven by a short data file.  An annotated
*  example of a data file can be obtained by deleting the first 3
*  characters from the following 16 lines:
*  'ScaLAPACK QR factorizations input file'
*  'PVM machine'
*  'QR.out'                      output file name (if any)
*  6                             device out
*  6                             number of factorizations
*  'QR' 'QL' 'LQ' 'RQ' 'QP' 'TZ' factorization: QR, QL, LQ, RQ, QP, TZ
*  4                             number of problems sizes
*  55 17 31 201                  values of M
*  5 71 31 201                   values of N
*  3                             number of MB's and NB's
*  4 3 5                         values of MB
*  4 7 3                         values of NB
*  7                             number of process grids (ordered P & Q)
*  1 2 1 4 2 3 8                 values of P
*  7 2 4 1 3 2 1                 values of Q
*  1.0                           threshold
*
*  Internal Parameters
*  ===================
*
*  TOTMEM   INTEGER, default = 2000000
*           TOTMEM is a machine-specific parameter indicating the
*           maximum amount of available memory in bytes.
*           The user should customize TOTMEM to his platform.  Remember
*           to leave room in memory for the operating system, the BLACS
*           buffer, etc.  For example, on a system with 8 MB of memory
*           per process (e.g., one processor on an Intel iPSC/860), the
*           parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
*           code, BLACS buffer, etc).  However, for PVM, we usually set
*           TOTMEM = 2000000.  Some experimenting with the maximum value
*           of TOTMEM may be required.
*
*  INTGSZ   INTEGER, default = 4 bytes.
*  DBLESZ   INTEGER, default = 8 bytes.
*           INTGSZ and DBLESZ indicate the length in bytes on the
*           given platform for an integer and a double precision real.
*  MEM      DOUBLE PRECISION array, dimension ( TOTMEM / DBLESZ )
*
*           All arrays used by SCALAPACK routines are allocated from
*           this array and referenced by pointers.  The integer IPA,
*           for example, is a pointer to the starting element of MEM for
*           the matrix A.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      INTEGER            DBLESZ, INTGSZ, MEMSIZ, NTESTS, TOTMEM
      DOUBLE PRECISION   PADVAL
      PARAMETER          ( DBLESZ = 8, TOTMEM = 2000000,
     $                     MEMSIZ = TOTMEM / DBLESZ, NTESTS = 20,
     $                     PADVAL = -9923.0D+0 )
#ifdef TEST_INT64
      PARAMETER          ( INTGSZ = 8 )
#else
      PARAMETER          ( INTGSZ = 4 )
#endif
*     ..
*     .. Local Scalars ..
      CHARACTER*2        FACT
      CHARACTER*6        PASSED
      CHARACTER*7        ROUT
      CHARACTER*8        ROUTCHK
      CHARACTER*80       OUTFILE
      LOGICAL            CHECK
      INTEGER            I, IAM, IASEED, ICTXT, IMIDPAD, INFO, IPA,
     $                   IPOSTPAD, IPPIV, IPREPAD, IPTAU, IPW, J, K,
     $                   KFAIL, KPASS, KSKIP, KTESTS, L, LIPIV, LTAU,
     $                   LWORK, M, MAXMN, MB, MINMN, MNP, MNQ, MP,
     $                   MYCOL, MYROW, N, NB, NFACT, NGRIDS, NMAT, NNB,
     $                   NOUT, NPCOL, NPROCS, NPROW, NQ, WORKFCT,
     $                   WORKSIZ
      REAL               THRESH
      DOUBLE PRECISION   ANORM, FRESID, NOPS, TMFLOPS
*     ..
*     .. Arrays ..
      CHARACTER*2        FACTOR( NTESTS )
      INTEGER            DESCA( DLEN_ ), IERR( 1 ), MBVAL( NTESTS ),
     $                   MVAL( NTESTS ), NBVAL( NTESTS ),
     $                   NVAL( NTESTS ), PVAL( NTESTS ), QVAL( NTESTS )
      DOUBLE PRECISION   CTIME( 1 ), MEM( MEMSIZ ), WTIME( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
     $                   BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
     $                   BLACS_PINFO, DESCINIT, IGSUM2D, PDCHEKPAD,
     $                   PDFILLPAD, PDGELQF, PDGELQRV,
     $                   PDGEQLF, PDGEQLRV, PDGEQPF,
     $                   PDQPPIV, PDGEQRF, PDGEQRRV,
     $                   PDGERQF, PDGERQRV, PDTZRZRV,
     $                   PDMATGEN, PDLAFCHK, PDQRINFO,
     $                   PDTZRZF, SLBOOT, SLCOMBINE, SLTIMER
*     ..
*     .. External Functions ..
      LOGICAL            LSAMEN
      INTEGER            ICEIL, NUMROC
      DOUBLE PRECISION   PDLANGE
      EXTERNAL           ICEIL, LSAMEN, NUMROC, PDLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Data Statements ..
      DATA               KTESTS, KPASS, KFAIL, KSKIP /4*0/
*     ..
*     .. Executable Statements ..
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      IASEED = 100
      CALL PDQRINFO( OUTFILE, NOUT, NFACT, FACTOR, NTESTS, NMAT, MVAL,
     $               NTESTS, NVAL, NTESTS, NNB, MBVAL, NTESTS, NBVAL,
     $               NTESTS, NGRIDS, PVAL, NTESTS, QVAL, NTESTS,
     $               THRESH, MEM, IAM, NPROCS )
      CHECK = ( THRESH.GE.0.0E+0 )
*
*     Loop over the different factorization types
*
      DO 40 I = 1, NFACT
*
         FACT = FACTOR( I )
*
*        Print headings
*
         IF( IAM.EQ.0 ) THEN
            WRITE( NOUT, FMT = * )
            IF( LSAMEN( 2, FACT, 'QR' ) ) THEN
               ROUT = 'PDGEQRF'
               ROUTCHK = 'PDGEQRRV'
               WRITE( NOUT, FMT = 9986 )
     $                'QR factorization tests.'
            ELSE IF( LSAMEN( 2, FACT, 'QL' ) ) THEN
               ROUT = 'PDGEQLF'
               ROUTCHK = 'PDGEQLRV'
               WRITE( NOUT, FMT = 9986 )
     $                'QL factorization tests.'
            ELSE IF( LSAMEN( 2, FACT, 'LQ' ) ) THEN
               ROUT = 'PDGELQF'
               ROUTCHK = 'PDGELQRV'
               WRITE( NOUT, FMT = 9986 )
     $                'LQ factorization tests.'
            ELSE IF( LSAMEN( 2, FACT, 'RQ' ) ) THEN
               ROUT = 'PDGERQF'
               ROUTCHK = 'PDGERQRV'
               WRITE( NOUT, FMT = 9986 )
     $                'RQ factorization tests.'
            ELSE IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
               ROUT = 'PDGEQPF'
               ROUTCHK = 'PDGEQRRV'
               WRITE( NOUT, FMT = 9986 )
     $                'QR factorization with column pivoting tests.'
            ELSE IF( LSAMEN( 2, FACT, 'TZ' ) ) THEN
               ROUT = 'PDTZRZF'
               ROUTCHK = 'PDTZRZRV'
               WRITE( NOUT, FMT = 9986 )
     $                'Complete orthogonal factorization tests.'
            END IF
            WRITE( NOUT, FMT = * )
            WRITE( NOUT, FMT = 9995 )
            WRITE( NOUT, FMT = 9994 )
            WRITE( NOUT, FMT = * )
         END IF
*
*        Loop over different process grids
*
         DO 30 J = 1, NGRIDS
*
            NPROW = PVAL( J )
            NPCOL = QVAL( J )
*
*           Make sure grid information is correct
*
            IERR( 1 ) = 0
            IF( NPROW.LT.1 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'GRID', 'nprow', NPROW
               IERR( 1 ) = 1
            ELSE IF( NPCOL.LT.1 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'GRID', 'npcol', NPCOL
               IERR( 1 ) = 1
            ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
               IERR( 1 ) = 1
            END IF
*
            IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'grid'
               KSKIP = KSKIP + 1
               GO TO 30
            END IF
*
*           Define process grid
*
            CALL BLACS_GET( -1, 0, ICTXT )
            CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
            CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*           Go to bottom of loop if this case doesn't use my process
*
            IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
     $         GO TO 30
*
            DO 20 K = 1, NMAT
*
               M = MVAL( K )
               N = NVAL( K )
*
*              Make sure matrix information is correct
*
               IERR(1) = 0
               IF( M.LT.1 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9999 ) 'MATRIX', 'M', M
                  IERR( 1 ) = 1
               ELSE IF( N.LT.1 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9999 ) 'MATRIX', 'N', N
                  IERR( 1 ) = 1
               END IF
*
*              Make sure no one had error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'matrix'
                  KSKIP = KSKIP + 1
                  GO TO 20
               END IF
*
*              Loop over different blocking sizes
*
               DO 10 L = 1, NNB
*
                  MB = MBVAL( L )
                  NB = NBVAL( L )
*
*                 Make sure mb is legal
*
                  IERR( 1 ) = 0
                  IF( MB.LT.1 ) THEN
                     IERR( 1 ) = 1
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9999 ) 'MB', 'MB', MB
                  END IF
*
*                 Check all processes for an error
*
                  CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1,
     $                          0 )
*
                  IF( IERR( 1 ).GT.0 ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9997 ) 'MB'
                     KSKIP = KSKIP + 1
                     GO TO 10
                  END IF
*
*                 Make sure nb is legal
*
                  IERR( 1 ) = 0
                  IF( NB.LT.1 ) THEN
                     IERR( 1 ) = 1
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9999 ) 'NB', 'NB', NB
                  END IF
*
*                 Check all processes for an error
*
                  CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1,
     $                          0 )
*
                  IF( IERR( 1 ).GT.0 ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9997 ) 'NB'
                     KSKIP = KSKIP + 1
                     GO TO 10
                  END IF
*
*                 Padding constants
*
                  MP  = NUMROC( M, MB, MYROW, 0, NPROW )
                  NQ  = NUMROC( N, NB, MYCOL, 0, NPCOL )
                  MNP = NUMROC( MIN( M, N ), MB, MYROW, 0, NPROW )
                  MNQ = NUMROC( MIN( M, N ), NB, MYCOL, 0, NPCOL )
                  IF( CHECK ) THEN
                     IPREPAD  = MAX( MB, MP )
                     IMIDPAD  = NB
                     IPOSTPAD = MAX( NB, NQ )
                  ELSE
                     IPREPAD  = 0
                     IMIDPAD  = 0
                     IPOSTPAD = 0
                  END IF
*
*                 Initialize the array descriptor for the matrix A
*
                  CALL DESCINIT( DESCA, M, N, MB, NB, 0, 0, ICTXT,
     $                           MAX( 1, MP ) + IMIDPAD, IERR( 1 ) )
*
*                 Check all processes for an error
*
                  CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1,
     $                          0 )
*
                  IF( IERR( 1 ).LT.0 ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9997 ) 'descriptor'
                     KSKIP = KSKIP + 1
                     GO TO 10
                  END IF
*
*                 Assign pointers into MEM for ScaLAPACK arrays, A is
*                 allocated starting at position MEM( IPREPAD+1 )
*
                  IPA   = IPREPAD+1
                  IPTAU = IPA + DESCA( LLD_ ) * NQ + IPOSTPAD + IPREPAD
*
                  IF( LSAMEN( 2, FACT, 'QR' ) ) THEN
*
                     LTAU = MNQ
                     IPW  = IPTAU + LTAU + IPOSTPAD + IPREPAD
*
*                    Figure the amount of workspace required by the QR
*                    factorization
*
                     LWORK = DESCA( NB_ ) * ( MP + NQ + DESCA( NB_ ) )
                     WORKFCT = LWORK + IPOSTPAD
                     WORKSIZ = WORKFCT
*
                     IF( CHECK ) THEN
*
*                       Figure the amount of workspace required by the
*                       checking routines PDLAFCHK, PDGEQRRV and
*                       PDLANGE
*
                        WORKSIZ = LWORK + MP*DESCA( NB_ ) + IPOSTPAD
*
                     END IF
*
                  ELSE IF( LSAMEN( 2, FACT, 'QL' ) ) THEN
*
                     LTAU = NQ
                     IPW = IPTAU + LTAU + IPOSTPAD + IPREPAD
*
*                    Figure the amount of workspace required by the QL
*                    factorization
*
                     LWORK = DESCA( NB_ ) * ( MP + NQ + DESCA( NB_ ) )
                     WORKFCT = LWORK + IPOSTPAD
                     WORKSIZ = WORKFCT
*
                     IF( CHECK ) THEN
*
*                       Figure the amount of workspace required by the
*                       checking routines PDLAFCHK, PDGEQLRV and
*                       PDLANGE
*
                        WORKSIZ = LWORK + MP*DESCA( NB_ ) + IPOSTPAD
*
                     END IF
*
                  ELSE IF( LSAMEN( 2, FACT, 'LQ' ) ) THEN
*
                     LTAU = MNP
                     IPW = IPTAU + LTAU + IPOSTPAD + IPREPAD
*
*                    Figure the amount of workspace required by the LQ
*                    factorization
*
                     LWORK = DESCA( MB_ ) * ( MP + NQ + DESCA( MB_ ) )
                     WORKFCT = LWORK + IPOSTPAD
                     WORKSIZ = WORKFCT
*
                     IF( CHECK ) THEN
*
*                       Figure the amount of workspace required by the
*                       checking routines PDLAFCHK, PDGELQRV and
*                       PDLANGE
*
                        WORKSIZ = LWORK +
     $                            MAX( MP*DESCA( NB_ ), NQ*DESCA( MB_ )
     $                            ) + IPOSTPAD
*
                     END IF
*
                  ELSE IF( LSAMEN( 2, FACT, 'RQ' ) ) THEN
*
                     LTAU = MP
                     IPW = IPTAU + LTAU + IPOSTPAD + IPREPAD
*
*                    Figure the amount of workspace required by the QR
*                    factorization
*
                     LWORK = DESCA( MB_ ) * ( MP + NQ + DESCA( MB_ ) )
                     WORKFCT = LWORK + IPOSTPAD
                     WORKSIZ = WORKFCT
*
                     IF( CHECK ) THEN
*
*                       Figure the amount of workspace required by the
*                       checking routines PDLAFCHK, PDGERQRV and
*                       PDLANGE
*
                        WORKSIZ = LWORK +
     $                            MAX( MP*DESCA( NB_ ), NQ*DESCA( MB_ )
     $                            ) + IPOSTPAD
*
                     END IF
*
                  ELSE IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
*
                     LTAU = MNQ
                     IPPIV = IPTAU + LTAU + IPOSTPAD + IPREPAD
                     LIPIV = ICEIL( INTGSZ*NQ, DBLESZ )
                     IPW = IPPIV + LIPIV + IPOSTPAD + IPREPAD
*
*                    Figure the amount of workspace required by the
*                    factorization i.e from IPW on.
*
                     LWORK = MAX( 3, MP + MAX( 1, NQ ) ) + 2 * NQ
                     WORKFCT = LWORK + IPOSTPAD
                     WORKSIZ = WORKFCT
*
                     IF( CHECK ) THEN
*
*                       Figure the amount of workspace required by the
*                       checking routines PDLAFCHK, PDGEQRRV,
*                       PDLANGE.
*
                        WORKSIZ = MAX( WORKSIZ - IPOSTPAD,
     $                    DESCA( NB_ )*( 2*MP + NQ + DESCA( NB_ ) ) ) +
     $                    IPOSTPAD
                     END IF
*
                  ELSE IF( LSAMEN( 2, FACT, 'TZ' ) ) THEN
*
                     LTAU = MP
                     IPW = IPTAU + LTAU + IPOSTPAD + IPREPAD
*
*                    Figure the amount of workspace required by the TZ
*                    factorization
*
                     LWORK = DESCA( MB_ ) * ( MP + NQ + DESCA( MB_ ) )
                     WORKFCT = LWORK + IPOSTPAD
                     WORKSIZ = WORKFCT
*
                     IF( CHECK ) THEN
*
*                       Figure the amount of workspace required by the
*                       checking routines PDLAFCHK, PDTZRZRV and
*                       PDLANGE
*
                        WORKSIZ = LWORK +
     $                            MAX( MP*DESCA( NB_ ), NQ*DESCA( MB_ )
     $                            ) + IPOSTPAD
*
                     END IF
*
                  END IF
*
*                 Check for adequate memory for problem size
*
                  IERR( 1 ) = 0
                  IF( IPW+WORKSIZ.GT.MEMSIZ ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9996 )
     $                         FACT // ' factorization',
     $                         ( IPW+WORKSIZ )*DBLESZ
                     IERR( 1 ) = 1
                  END IF
*
*                 Check all processes for an error
*
                  CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1,
     $                          0 )
*
                  IF( IERR( 1 ).GT.0 ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                     KSKIP = KSKIP + 1
                     GO TO 10
                  END IF
*
*                 Generate the matrix A
*
                  CALL PDMATGEN( ICTXT, 'N', 'N', DESCA( M_ ),
     $                           DESCA( N_ ), DESCA( MB_ ),
     $                           DESCA( NB_ ), MEM( IPA ),
     $                           DESCA( LLD_ ), DESCA( RSRC_ ),
     $                           DESCA( CSRC_ ), IASEED, 0, MP, 0, NQ,
     $                           MYROW, MYCOL, NPROW, NPCOL )
*
*                 Need the Infinity of A for checking
*
                  IF( CHECK ) THEN
                     CALL PDFILLPAD( ICTXT, MP, NQ, MEM( IPA-IPREPAD ),
     $                               DESCA( LLD_ ), IPREPAD, IPOSTPAD,
     $                               PADVAL )
                     IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
                        CALL PDFILLPAD( ICTXT, LIPIV, 1,
     $                                  MEM( IPPIV-IPREPAD ), LIPIV,
     $                                  IPREPAD, IPOSTPAD, PADVAL )
                     END IF
                     CALL PDFILLPAD( ICTXT, LTAU, 1,
     $                               MEM( IPTAU-IPREPAD ), LTAU,
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     CALL PDFILLPAD( ICTXT, WORKSIZ-IPOSTPAD, 1,
     $                               MEM( IPW-IPREPAD ),
     $                               WORKSIZ-IPOSTPAD,
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     ANORM = PDLANGE( 'I', M, N, MEM( IPA ), 1, 1,
     $                                DESCA, MEM( IPW ) )
                     CALL PDCHEKPAD( ICTXT, 'PDLANGE', MP, NQ,
     $                               MEM( IPA-IPREPAD ), DESCA( LLD_ ),
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     CALL PDCHEKPAD( ICTXT, 'PDLANGE',
     $                               WORKSIZ-IPOSTPAD, 1,
     $                               MEM( IPW-IPREPAD ),
     $                               WORKSIZ-IPOSTPAD, IPREPAD,
     $                               IPOSTPAD, PADVAL )
                     CALL PDFILLPAD( ICTXT, WORKFCT-IPOSTPAD, 1,
     $                               MEM( IPW-IPREPAD ),
     $                               WORKFCT-IPOSTPAD,
     $                               IPREPAD, IPOSTPAD, PADVAL )
                  END IF
*
                  CALL SLBOOT()
                  CALL BLACS_BARRIER( ICTXT, 'All' )
*
*                 Perform QR factorizations
*
                  IF( LSAMEN( 2, FACT, 'QR' ) ) THEN
                     CALL SLTIMER( 1 )
                     CALL PDGEQRF( M, N, MEM( IPA ), 1, 1, DESCA,
     $                             MEM( IPTAU ), MEM( IPW ), LWORK,
     $                             INFO )
                     CALL SLTIMER( 1 )
                  ELSE IF( LSAMEN( 2, FACT, 'QL' ) ) THEN
                     CALL SLTIMER( 1 )
                     CALL PDGEQLF( M, N, MEM( IPA ), 1, 1, DESCA,
     $                             MEM( IPTAU ), MEM( IPW ), LWORK,
     $                             INFO )
                     CALL SLTIMER( 1 )
                  ELSE IF( LSAMEN( 2, FACT, 'LQ' ) ) THEN
                     CALL SLTIMER( 1 )
                     CALL PDGELQF( M, N, MEM( IPA ), 1, 1, DESCA,
     $                             MEM( IPTAU ), MEM( IPW ), LWORK,
     $                             INFO )
                     CALL SLTIMER( 1 )
                  ELSE IF( LSAMEN( 2, FACT, 'RQ' ) ) THEN
                     CALL SLTIMER( 1 )
                     CALL PDGERQF( M, N, MEM( IPA ), 1, 1, DESCA,
     $                             MEM( IPTAU ), MEM( IPW ), LWORK,
     $                             INFO )
                     CALL SLTIMER( 1 )
                  ELSE IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
                     CALL SLTIMER( 1 )
                     CALL PDGEQPF( M, N, MEM( IPA ), 1, 1, DESCA,
     $                             MEM( IPPIV ), MEM( IPTAU ),
     $                             MEM( IPW ), LWORK, INFO )
                     CALL SLTIMER( 1 )
                  ELSE IF( LSAMEN( 2, FACT, 'TZ' ) ) THEN
                     CALL SLTIMER( 1 )
                     IF( N.GE.M )
     $                  CALL PDTZRZF( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                MEM( IPTAU ), MEM( IPW ), LWORK,
     $                                INFO )
                     CALL SLTIMER( 1 )
                  END IF
*
                  IF( CHECK ) THEN
*
*                    Check for memory overwrite in factorization
*
                     CALL PDCHEKPAD( ICTXT, ROUT, MP, NQ,
     $                               MEM( IPA-IPREPAD ), DESCA( LLD_ ),
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     CALL PDCHEKPAD( ICTXT, ROUT, LTAU, 1,
     $                               MEM( IPTAU-IPREPAD ), LTAU,
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
                        CALL PDCHEKPAD( ICTXT, ROUT, LIPIV, 1,
     $                                  MEM( IPPIV-IPREPAD ), LIPIV,
     $                                  IPREPAD, IPOSTPAD, PADVAL )
                     END IF
                     CALL PDCHEKPAD( ICTXT, ROUT, WORKFCT-IPOSTPAD, 1,
     $                               MEM( IPW-IPREPAD ),
     $                               WORKFCT-IPOSTPAD, IPREPAD,
     $                               IPOSTPAD, PADVAL )
                     CALL PDFILLPAD( ICTXT, WORKSIZ-IPOSTPAD, 1,
     $                               MEM( IPW-IPREPAD ),
     $                               WORKSIZ-IPOSTPAD,
     $                               IPREPAD, IPOSTPAD, PADVAL )
*
                     IF( LSAMEN( 2, FACT, 'QR' ) ) THEN
*
*                       Compute residual = ||A-Q*R|| / (||A||*N*eps)
*
                        CALL PDGEQRRV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                 MEM( IPTAU ), MEM( IPW ) )
                        CALL PDLAFCHK( 'No', 'No', M, N, MEM( IPA ), 1,
     $                              1, DESCA, IASEED, ANORM, FRESID,
     $                              MEM( IPW ) )
                     ELSE IF( LSAMEN( 2, FACT, 'QL' ) ) THEN
*
*                       Compute residual = ||A-Q*L|| / (||A||*N*eps)
*
                        CALL PDGEQLRV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                 MEM( IPTAU ), MEM( IPW ) )
                        CALL PDLAFCHK( 'No', 'No', M, N, MEM( IPA ), 1,
     $                              1, DESCA, IASEED, ANORM, FRESID,
     $                              MEM( IPW ) )
                     ELSE IF( LSAMEN( 2, FACT, 'LQ' ) ) THEN
*
*                       Compute residual = ||A-L*Q|| / (||A||*N*eps)
*
                        CALL PDGELQRV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                 MEM( IPTAU ), MEM( IPW ) )
                        CALL PDLAFCHK( 'No', 'No', M, N, MEM( IPA ), 1,
     $                              1, DESCA, IASEED, ANORM, FRESID,
     $                              MEM( IPW ) )
                     ELSE IF( LSAMEN( 2, FACT, 'RQ' ) ) THEN
*
*                       Compute residual = ||A-R*Q|| / (||A||*N*eps)
*
                        CALL PDGERQRV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                 MEM( IPTAU ), MEM( IPW ) )
                        CALL PDLAFCHK( 'No', 'No', M, N, MEM( IPA ), 1,
     $                              1, DESCA, IASEED, ANORM, FRESID,
     $                              MEM( IPW ) )
                     ELSE IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
*
*                       Compute residual = ||AP-Q*R|| / (||A||*N*eps)
*
                        CALL PDGEQRRV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                 MEM( IPTAU ), MEM( IPW ) )
                     ELSE IF( LSAMEN( 2, FACT, 'TZ' ) ) THEN
*
*                       Compute residual = ||A-T*Z|| / (||A||*N*eps)
*
                        IF( N.GE.M ) THEN
                           CALL PDTZRZRV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                    MEM( IPTAU ), MEM( IPW ) )
                        END IF
                        CALL PDLAFCHK( 'No', 'No', M, N, MEM( IPA ), 1,
     $                                 1, DESCA, IASEED, ANORM, FRESID,
     $                                 MEM( IPW ) )
                     END IF
*
*                    Check for memory overwrite
*
                     CALL PDCHEKPAD( ICTXT, ROUTCHK, MP, NQ,
     $                               MEM( IPA-IPREPAD ), DESCA( LLD_ ),
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     CALL PDCHEKPAD( ICTXT, ROUTCHK, LTAU, 1,
     $                               MEM( IPTAU-IPREPAD ), LTAU,
     $                               IPREPAD, IPOSTPAD, PADVAL )
                     CALL PDCHEKPAD( ICTXT, ROUTCHK, WORKSIZ-IPOSTPAD,
     $                               1, MEM( IPW-IPREPAD ),
     $                               WORKSIZ-IPOSTPAD, IPREPAD,
     $                               IPOSTPAD, PADVAL )
*
                     IF( LSAMEN( 2, FACT, 'QP' ) ) THEN
*
                        CALL PDQPPIV( M, N, MEM( IPA ), 1, 1, DESCA,
     $                                MEM( IPPIV ) )
*
*                       Check for memory overwrite
*
                        CALL PDCHEKPAD( ICTXT, 'PDQPPIV', MP, NQ,
     $                                  MEM( IPA-IPREPAD ),
     $                                  DESCA( LLD_ ),
     $                                  IPREPAD, IPOSTPAD, PADVAL )
                        CALL PDCHEKPAD( ICTXT, 'PDQPPIV', LIPIV, 1,
     $                                  MEM( IPPIV-IPREPAD ), LIPIV,
     $                                  IPREPAD, IPOSTPAD, PADVAL )
*
                        CALL PDLAFCHK( 'No', 'No', M, N, MEM( IPA ), 1,
     $                                 1, DESCA, IASEED, ANORM, FRESID,
     $                                 MEM( IPW ) )
*
*                       Check for memory overwrite
*
                        CALL PDCHEKPAD( ICTXT, 'PDLAFCHK', MP, NQ,
     $                                  MEM( IPA-IPREPAD ),
     $                                  DESCA( LLD_ ),
     $                                  IPREPAD, IPOSTPAD, PADVAL )
                        CALL PDCHEKPAD( ICTXT, 'PDLAFCHK',
     $                                  WORKSIZ-IPOSTPAD, 1,
     $                                  MEM( IPW-IPREPAD ),
     $                                  WORKSIZ-IPOSTPAD, IPREPAD,
     $                                  IPOSTPAD, PADVAL )
                     END IF
*
*                    Test residual and detect NaN result
*
                     IF( LSAMEN( 2, FACT, 'TZ' ) .AND. N.LT.M ) THEN
                        KSKIP = KSKIP + 1
                        PASSED = 'BYPASS'
                     ELSE
                        IF( FRESID.LE.THRESH .AND.
     $                      (FRESID-FRESID).EQ.0.0D+0 ) THEN
                           KPASS = KPASS + 1
                           PASSED = 'PASSED'
                        ELSE
                           KFAIL = KFAIL + 1
                           PASSED = 'FAILED'
                        END IF
                     END IF
*
                  ELSE
*
*                    Don't perform the checking, only timing
*
                     KPASS = KPASS + 1
                     FRESID = FRESID - FRESID
                     PASSED = 'BYPASS'
*
                  END IF
*
*                 Gather maximum of all CPU and WALL clock timings
*
                  CALL SLCOMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME )
                  CALL SLCOMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME )
*
*                 Print results
*
                  IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
*
                     MINMN = MIN( M, N )
                     MAXMN = MAX( M, N )
*
                     IF( LSAMEN( 2, FACT, 'TZ' ) ) THEN
                        IF( M.GE.N ) THEN
                           NOPS = 0.0D+0
                        ELSE
*
*                          5/2 ( M^2 N - M^3 ) + 5/2 N M + 1/2 M^2 for
*                          complete orthogonal factorization (M <= N).
*
                           NOPS = ( 5.0D+0 * (
     $                              DBLE( N )*( DBLE( M )**2 ) -
     $                              DBLE( M )**3 +
     $                              DBLE( N )*DBLE( M ) ) +
     $                              DBLE( M )**2 ) / 2.0D+0
                        END IF
*
                     ELSE
*
*                       2 M N^2 - 2/3 N^2 + M N + N^2 for QR type
*                       factorization when M >= N.
*
                        NOPS = 2.0D+0 * ( DBLE( MINMN )**2 ) *
     $                     ( DBLE( MAXMN )-DBLE( MINMN ) / 3.0D+0 ) +
     $                     ( DBLE( MAXMN )+DBLE( MINMN ) )*DBLE( MINMN )
                     END IF
*
*                    Print WALL time
*
                     IF( WTIME( 1 ).GT.0.0D+0 ) THEN
                        TMFLOPS = NOPS / ( WTIME( 1 ) * 1.0D+6 )
                     ELSE
                        TMFLOPS = 0.0D+0
                     END IF
                     IF( WTIME( 1 ).GE.0.0D+0 )
     $                  WRITE( NOUT, FMT = 9993 ) 'WALL', M, N, MB, NB,
     $                         NPROW, NPCOL, WTIME( 1 ), TMFLOPS,
     $                         PASSED, FRESID
*
*                    Print CPU time
*
                     IF( CTIME( 1 ).GT.0.0D+0 ) THEN
                        TMFLOPS = NOPS / ( CTIME( 1 ) * 1.0D+6 )
                     ELSE
                        TMFLOPS = 0.0D+0
                     END IF
                     IF( CTIME( 1 ).GE.0.0D+0 )
     $                  WRITE( NOUT, FMT = 9993 ) 'CPU ', M, N, MB, NB,
     $                         NPROW, NPCOL, CTIME( 1 ), TMFLOPS,
     $                         PASSED, FRESID
*
                  END IF
*
   10          CONTINUE
*
   20       CONTINUE
*
            CALL BLACS_GRIDEXIT( ICTXT )
*
   30    CONTINUE
*
   40 CONTINUE
*
*     Print out ending messages and close output file
*
      IF( IAM.EQ.0 ) THEN
         KTESTS = KPASS + KFAIL + KSKIP
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9992 ) KTESTS
         IF( CHECK ) THEN
            WRITE( NOUT, FMT = 9991 ) KPASS
            WRITE( NOUT, FMT = 9989 ) KFAIL
         ELSE
            WRITE( NOUT, FMT = 9990 ) KPASS
         END IF
         WRITE( NOUT, FMT = 9988 ) KSKIP
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9987 )
         IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $      CLOSE ( NOUT )
      END IF
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A6, ': ', A5, ' = ', I3,
     $        '; It should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', I4, '. It can be at most',
     $        I4 )
 9997 FORMAT( 'Bad ', A6, ' parameters: going on to next test case.' )
 9996 FORMAT( 'Unable to perform ', A, ': need TOTMEM of at least',
     $        I11 )
 9995 FORMAT( 'TIME      M      N  MB  NB     P     Q Fact Time ',
     $        '     MFLOPS  CHECK  Residual' )
 9994 FORMAT( '---- ------ ------ --- --- ----- ----- --------- ',
     $        '----------- ------  --------' )
 9993 FORMAT( A4, 1X, I6, 1X, I6, 1X, I3, 1X, I3, 1X, I5, 1X, I5, 1X,
     $        F9.2, 1X, F11.2, 1X, A6, 2X, G8.1 )
 9992 FORMAT( 'Finished ', I6, ' tests, with the following results:' )
 9991 FORMAT( I5, ' tests completed and passed residual checks.' )
 9990 FORMAT( I5, ' tests completed without checking.' )
 9989 FORMAT( I5, ' tests completed and failed residual checks.' )
 9988 FORMAT( I5, ' tests skipped because of illegal input values.' )
 9987 FORMAT( 'END OF TESTS.' )
 9986 FORMAT( A )
*
      STOP
*
*     End of PDQRDRIVER
*
      END
*
      SUBROUTINE PDQPPIV( M, N, A, IA, JA, DESCA, IPIV )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IA, JA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), IPIV( * )
      DOUBLE PRECISION   A( * )
*     ..
*
*  Purpose
*  =======
*
*  PDQPPIV applies to sub( A ) = A(IA:IA+M-1,JA:JA+N-1) the pivots
*  returned by PDGEQPF in reverse order for checking purposes.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) DOUBLE PRECISION pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, the local pieces of the M-by-N distributed matrix
*          sub( A ) which is to be permuted. On exit, the local pieces
*          of the distributed permuted submatrix sub( A ) * Inv( P ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local input) INTEGER array, dimension LOCc(JA+N-1).
*          On exit, if IPIV(I) = K, the local i-th column of sub( A )*P
*          was the global K-th column of sub( A ). IPIV is tied to the
*          distributed matrix A.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            IACOL, ICOFFA, ICTXT, IITMP, IPVT, IPCOL,
     $                   IPROW, ITMP, J, JJ, JJA, KK, MYCOL, MYROW,
     $                   NPCOL, NPROW, NQ
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, IGEBR2D, IGEBS2D, IGERV2D,
     $                   IGESD2D, IGAMN2D, INFOG1L, PDSWAP
*     ..
*     .. External Functions ..
      INTEGER            INDXL2G, NUMROC
      EXTERNAL           INDXL2G, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      CALL INFOG1L( JA, DESCA( NB_ ), NPCOL, MYCOL, DESCA( CSRC_ ), JJA,
     $              IACOL )
      ICOFFA = MOD( JA-1, DESCA( NB_ ) )
      NQ = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFFA
*
      DO 20 J = JA, JA+N-2
*
         IPVT = JA+N-1
         ITMP = JA+N
*
*        Find first the local minimum candidate for pivoting
*
         CALL INFOG1L( J, DESCA( NB_ ), NPCOL, MYCOL, DESCA( CSRC_ ),
     $                 JJ, IACOL )
         DO 10 KK = JJ, JJA+NQ-1
            IF( IPIV( KK ).LT.IPVT )THEN
               IITMP = KK
               IPVT = IPIV( KK )
            END IF
   10    CONTINUE
*
*        Find the global minimum pivot
*
         CALL IGAMN2D( ICTXT, 'Rowwise', ' ', 1, 1, IPVT, 1, IPROW,
     $                 IPCOL, 1, -1, MYCOL )
*
*        Broadcast the corresponding index to the other process columns
*
         IF( MYCOL.EQ.IPCOL ) THEN
            ITMP = INDXL2G( IITMP, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $                      NPCOL )
            CALL IGEBS2D( ICTXT, 'Rowwise', ' ', 1, 1, ITMP, 1 )
            IF( IPCOL.NE.IACOL ) THEN
               CALL IGERV2D( ICTXT, 1, 1, IPIV( IITMP ), 1, MYROW,
     $                       IACOL )
            ELSE
               IF( MYCOL.EQ.IACOL )
     $            IPIV( IITMP ) = IPIV( JJ )
            END IF
         ELSE
            CALL IGEBR2D( ICTXT, 'Rowwise', ' ', 1, 1, ITMP, 1, MYROW,
     $                    IPCOL )
            IF( MYCOL.EQ.IACOL .AND. IPCOL.NE.IACOL )
     $         CALL IGESD2D( ICTXT, 1, 1, IPIV( JJ ), 1, MYROW, IPCOL )
         END IF
*
*        Swap the columns of A
*
         CALL PDSWAP( M, A, IA, ITMP, DESCA, 1, A, IA, J, DESCA, 1 )
*
   20 CONTINUE
*
*     End of PDQPPIV
*
      END