1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
|
SUBROUTINE PSGBDCMV( LDBW, BWL, BWU, TRANS, N, A, JA, DESCA, NRHS,
$ B, IB, DESCB, X, WORK, LWORK, INFO )
*
*
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER BWL, BWU, IB, INFO, JA, LDBW, LWORK, N, NRHS
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCB( * )
REAL A( * ), B( * ), WORK( * ), X( * )
* ..
*
*
* Purpose
* =======
*
*
* =====================================================================
*
* Arguments
* =========
*
*
* TRANS (global input) CHARACTER
* = 'N': Solve with A(1:N, JA:JA+N-1);
* = 'T' or 'C': Solve with A(1:N, JA:JA+N-1)^T;
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
*
* BWL (global input) INTEGER
* Number of subdiagonals. 0 <= BWL <= N-1
*
* BWU (global input) INTEGER
* Number of superdiagonals. 0 <= BWU <= N-1
*
* A (local input/local output) REAL pointer into
* local memory to an array with first dimension
* LLD_A >=(bwl+bwu+1) (stored in DESCA).
* On entry, this array contains the local pieces of the
* This local portion is stored in the packed banded format
* used in LAPACK. Please see the Notes below and the
* ScaLAPACK manual for more detail on the format of
* distributed matrices.
*
* JA (global input) INTEGER
* The index in the global array A that points to the start of
* the matrix to be operated on (which may be either all of A
* or a submatrix of A).
*
* DESCA (global and local input) INTEGER array of dimension DLEN.
* if 1D type (DTYPE_A=501), DLEN >= 7;
* if 2D type (DTYPE_A=1), DLEN >= 9 .
* The array descriptor for the distributed matrix A.
* Contains information of mapping of A to memory. Please
* see NOTES below for full description and options.
*
* AF (local output) REAL array, dimension LAF.
* Auxiliary Fillin Space.
* Fillin is created during the factorization routine
* PSDBTRF and this is stored in AF. If a linear system
* is to be solved using PSDBTRS after the factorization
* routine, AF *must not be altered* after the factorization.
*
* LAF (local input) INTEGER
* Size of user-input Auxiliary Fillin space AF. Must be >=
* NB*(bwl+bwu)+6*max(bwl,bwu)*max(bwl,bwu)
* If LAF is not large enough, an error code will be returned
* and the minimum acceptable size will be returned in AF( 1 )
*
* WORK (local workspace/local output)
* REAL temporary workspace. This space may
* be overwritten in between calls to routines. WORK must be
* the size given in LWORK.
* On exit, WORK( 1 ) contains the minimal LWORK.
*
* LWORK (local input or global input) INTEGER
* Size of user-input workspace WORK.
* If LWORK is too small, the minimal acceptable size will be
* returned in WORK(1) and an error code is returned. LWORK>=
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* =====================================================================
*
*
* Restrictions
* ============
*
* The following are restrictions on the input parameters. Some of these
* are temporary and will be removed in future releases, while others
* may reflect fundamental technical limitations.
*
* Non-cyclic restriction: VERY IMPORTANT!
* P*NB>= mod(JA-1,NB)+N.
* The mapping for matrices must be blocked, reflecting the nature
* of the divide and conquer algorithm as a task-parallel algorithm.
* This formula in words is: no processor may have more than one
* chunk of the matrix.
*
* Blocksize cannot be too small:
* If the matrix spans more than one processor, the following
* restriction on NB, the size of each block on each processor,
* must hold:
* NB >= 2*MAX(BWL,BWU)
* The bulk of parallel computation is done on the matrix of size
* O(NB) on each processor. If this is too small, divide and conquer
* is a poor choice of algorithm.
*
* Submatrix reference:
* JA = IB
* Alignment restriction that prevents unnecessary communication.
*
*
* =====================================================================
*
*
* Notes
* =====
*
* If the factorization routine and the solve routine are to be called
* separately (to solve various sets of righthand sides using the same
* coefficient matrix), the auxiliary space AF *must not be altered*
* between calls to the factorization routine and the solve routine.
*
* The best algorithm for solving banded and tridiagonal linear systems
* depends on a variety of parameters, especially the bandwidth.
* Currently, only algorithms designed for the case N/P >> bw are
* implemented. These go by many names, including Divide and Conquer,
* Partitioning, domain decomposition-type, etc.
*
* Algorithm description: Divide and Conquer
*
* The Divide and Conqer algorithm assumes the matrix is narrowly
* banded compared with the number of equations. In this situation,
* it is best to distribute the input matrix A one-dimensionally,
* with columns atomic and rows divided amongst the processes.
* The basic algorithm divides the banded matrix up into
* P pieces with one stored on each processor,
* and then proceeds in 2 phases for the factorization or 3 for the
* solution of a linear system.
* 1) Local Phase:
* The individual pieces are factored independently and in
* parallel. These factors are applied to the matrix creating
* fillin, which is stored in a non-inspectable way in auxiliary
* space AF. Mathematically, this is equivalent to reordering
* the matrix A as P A P^T and then factoring the principal
* leading submatrix of size equal to the sum of the sizes of
* the matrices factored on each processor. The factors of
* these submatrices overwrite the corresponding parts of A
* in memory.
* 2) Reduced System Phase:
* A small (max(bwl,bwu)* (P-1)) system is formed representing
* interaction of the larger blocks, and is stored (as are its
* factors) in the space AF. A parallel Block Cyclic Reduction
* algorithm is used. For a linear system, a parallel front solve
* followed by an analagous backsolve, both using the structure
* of the factored matrix, are performed.
* 3) Backsubsitution Phase:
* For a linear system, a local backsubstitution is performed on
* each processor in parallel.
*
*
* Descriptors
* ===========
*
* Descriptors now have *types* and differ from ScaLAPACK 1.0.
*
* Note: banded codes can use either the old two dimensional
* or new one-dimensional descriptors, though the processor grid in
* both cases *must be one-dimensional*. We describe both types below.
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
* One-dimensional descriptors:
*
* One-dimensional descriptors are a new addition to ScaLAPACK since
* version 1.0. They simplify and shorten the descriptor for 1D
* arrays.
*
* Since ScaLAPACK supports two-dimensional arrays as the fundamental
* object, we allow 1D arrays to be distributed either over the
* first dimension of the array (as if the grid were P-by-1) or the
* 2nd dimension (as if the grid were 1-by-P). This choice is
* indicated by the descriptor type (501 or 502)
* as described below.
*
* IMPORTANT NOTE: the actual BLACS grid represented by the
* CTXT entry in the descriptor may be *either* P-by-1 or 1-by-P
* irrespective of which one-dimensional descriptor type
* (501 or 502) is input.
* This routine will interpret the grid properly either way.
* ScaLAPACK routines *do not support intercontext operations* so that
* the grid passed to a single ScaLAPACK routine *must be the same*
* for all array descriptors passed to that routine.
*
* NOTE: In all cases where 1D descriptors are used, 2D descriptors
* may also be used, since a one-dimensional array is a special case
* of a two-dimensional array with one dimension of size unity.
* The two-dimensional array used in this case *must* be of the
* proper orientation:
* If the appropriate one-dimensional descriptor is DTYPEA=501
* (1 by P type), then the two dimensional descriptor must
* have a CTXT value that refers to a 1 by P BLACS grid;
* If the appropriate one-dimensional descriptor is DTYPEA=502
* (P by 1 type), then the two dimensional descriptor must
* have a CTXT value that refers to a P by 1 BLACS grid.
*
*
* Summary of allowed descriptors, types, and BLACS grids:
* DTYPE 501 502 1 1
* BLACS grid 1xP or Px1 1xP or Px1 1xP Px1
* -----------------------------------------------------
* A OK NO OK NO
* B NO OK NO OK
*
* Let A be a generic term for any 1D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- ---------- ------------------------------------------
* DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
* TYPE_A = 501: 1-by-P grid.
* TYPE_A = 502: P-by-1 grid.
* CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* N_A (global) DESCA( 3 ) The size of the array dimension being
* distributed.
* NB_A (global) DESCA( 4 ) The blocking factor used to distribute
* the distributed dimension of the array.
* SRC_A (global) DESCA( 5 ) The process row or column over which the
* first row or column of the array
* is distributed.
* LLD_A (local) DESCA( 6 ) The leading dimension of the local array
* storing the local blocks of the distri-
* buted array A. Minimum value of LLD_A
* depends on TYPE_A.
* TYPE_A = 501: LLD_A >=
* size of undistributed dimension, 1.
* TYPE_A = 502: LLD_A >=NB_A, 1.
* Reserved DESCA( 7 ) Reserved for future use.
*
*
*
* =====================================================================
*
* Code Developer: Andrew J. Cleary, University of Tennessee.
* Current address: Lawrence Livermore National Labs.
* This version released: August, 2001.
*
* =====================================================================
*
* ..
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0 )
PARAMETER ( ZERO = 0.0E+0 )
INTEGER INT_ONE
PARAMETER ( INT_ONE = 1 )
INTEGER DESCMULT, BIGNUM
PARAMETER (DESCMULT = 100, BIGNUM = DESCMULT * DESCMULT)
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER CSRC, DL_N_M, DL_N_N, DL_P_M, DL_P_N, DU_N_M,
$ DU_N_N, DU_P_M, DU_P_N, FIRST_PROC, I, ICTXT,
$ ICTXT_NEW, ICTXT_SAVE, IDUM2, IDUM3, J, JA_NEW,
$ LLDA, LLDB, MAX_BW, MYCOL, MYROW, MY_NUM_COLS,
$ NB, NP, NPCOL, NPROW, NP_SAVE, ODD_SIZE, OFST,
$ PART_OFFSET, PART_SIZE, STORE_M_B, STORE_N_A
INTEGER NUMROC_SIZE
* ..
* .. Local Arrays ..
INTEGER PARAM_CHECK( 17, 3 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, PXERBLA, RESHAPE
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC
EXTERNAL LSAME, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC ICHAR, MIN, MOD
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
*
ICTXT = DESCA( CTXT_ )
CSRC = DESCA( CSRC_ )
NB = DESCA( NB_ )
LLDA = DESCA( LLD_ )
STORE_N_A = DESCA( N_ )
LLDB = DESCB( LLD_ )
STORE_M_B = DESCB( M_ )
*
*
* Size of separator blocks is maximum of bandwidths
*
MAX_BW = MAX(BWL,BWU)
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
NP = NPROW * NPCOL
*
*
*
IF( LSAME( TRANS, 'N' ) ) THEN
IDUM2 = ICHAR( 'N' )
ELSE IF ( LSAME( TRANS, 'T' ) ) THEN
IDUM2 = ICHAR( 'T' )
ELSE IF ( LSAME( TRANS, 'C' ) ) THEN
IDUM2 = ICHAR( 'T' )
ELSE
INFO = -1
END IF
*
IF( LWORK .LT. -1) THEN
INFO = -15
ELSE IF ( LWORK .EQ. -1 ) THEN
IDUM3 = -1
ELSE
IDUM3 = 1
ENDIF
*
IF( N .LT. 0 ) THEN
INFO = -2
ENDIF
*
IF( N+JA-1 .GT. STORE_N_A ) THEN
INFO = -( 8*100 + 6 )
ENDIF
*
IF(( BWL .GT. N-1 ) .OR.
$ ( BWL .LT. 0 ) ) THEN
INFO = -3
ENDIF
*
IF(( BWU .GT. N-1 ) .OR.
$ ( BWU .LT. 0 ) ) THEN
INFO = -4
ENDIF
*
IF( LLDA .LT. (BWL+BWU+1) ) THEN
INFO = -( 8*100 + 6 )
ENDIF
*
IF( NB .LE. 0 ) THEN
INFO = -( 8*100 + 4 )
ENDIF
*
* Argument checking that is specific to Divide & Conquer routine
*
IF( NPROW .NE. 1 ) THEN
INFO = -( 8*100+2 )
ENDIF
*
IF( N .GT. NP*NB-MOD( JA-1, NB )) THEN
INFO = -( 2 )
CALL PXERBLA( ICTXT,
$ 'PSDBDCMV, D&C alg.: only 1 block per proc',
$ -INFO )
RETURN
ENDIF
*
IF((JA+N-1.GT.NB) .AND. ( NB.LT.2*MAX(BWL,BWU) )) THEN
INFO = -( 8*100+4 )
CALL PXERBLA( ICTXT,
$ 'PSDBDCMV, D&C alg.: NB too small',
$ -INFO )
RETURN
ENDIF
*
*
* Pack params and positions into arrays for global consistency check
*
PARAM_CHECK( 17, 1 ) = DESCB(5)
PARAM_CHECK( 16, 1 ) = DESCB(4)
PARAM_CHECK( 15, 1 ) = DESCB(3)
PARAM_CHECK( 14, 1 ) = DESCB(2)
PARAM_CHECK( 13, 1 ) = DESCB(1)
PARAM_CHECK( 12, 1 ) = IB
PARAM_CHECK( 11, 1 ) = DESCA(5)
PARAM_CHECK( 10, 1 ) = DESCA(4)
PARAM_CHECK( 9, 1 ) = DESCA(3)
PARAM_CHECK( 8, 1 ) = DESCA(1)
PARAM_CHECK( 7, 1 ) = JA
PARAM_CHECK( 6, 1 ) = NRHS
PARAM_CHECK( 5, 1 ) = BWU
PARAM_CHECK( 4, 1 ) = BWL
PARAM_CHECK( 3, 1 ) = N
PARAM_CHECK( 2, 1 ) = IDUM3
PARAM_CHECK( 1, 1 ) = IDUM2
*
PARAM_CHECK( 17, 2 ) = 1105
PARAM_CHECK( 16, 2 ) = 1104
PARAM_CHECK( 15, 2 ) = 1103
PARAM_CHECK( 14, 2 ) = 1102
PARAM_CHECK( 13, 2 ) = 1101
PARAM_CHECK( 12, 2 ) = 10
PARAM_CHECK( 11, 2 ) = 805
PARAM_CHECK( 10, 2 ) = 804
PARAM_CHECK( 9, 2 ) = 803
PARAM_CHECK( 8, 2 ) = 801
PARAM_CHECK( 7, 2 ) = 7
PARAM_CHECK( 6, 2 ) = 5
PARAM_CHECK( 5, 2 ) = 4
PARAM_CHECK( 4, 2 ) = 3
PARAM_CHECK( 3, 2 ) = 2
PARAM_CHECK( 2, 2 ) = 15
PARAM_CHECK( 1, 2 ) = 1
*
* Want to find errors with MIN( ), so if no error, set it to a big
* number. If there already is an error, multiply by the the
* descriptor multiplier.
*
IF( INFO.GE.0 ) THEN
INFO = BIGNUM
ELSE IF( INFO.LT.-DESCMULT ) THEN
INFO = -INFO
ELSE
INFO = -INFO * DESCMULT
END IF
*
* Check consistency across processors
*
CALL GLOBCHK( ICTXT, 17, PARAM_CHECK, 17,
$ PARAM_CHECK( 1, 3 ), INFO )
*
* Prepare output: set info = 0 if no error, and divide by DESCMULT
* if error is not in a descriptor entry.
*
IF( INFO.EQ.BIGNUM ) THEN
INFO = 0
ELSE IF( MOD( INFO, DESCMULT ) .EQ. 0 ) THEN
INFO = -INFO / DESCMULT
ELSE
INFO = -INFO
END IF
*
IF( INFO.LT.0 ) THEN
CALL PXERBLA( ICTXT, 'PSDBDCMV', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
*
* Adjust addressing into matrix space to properly get into
* the beginning part of the relevant data
*
PART_OFFSET = NB*( (JA-1)/(NPCOL*NB) )
*
IF ( (MYCOL-CSRC) .LT. (JA-PART_OFFSET-1)/NB ) THEN
PART_OFFSET = PART_OFFSET + NB
ENDIF
*
IF ( MYCOL .LT. CSRC ) THEN
PART_OFFSET = PART_OFFSET - NB
ENDIF
*
* Form a new BLACS grid (the "standard form" grid) with only procs
* holding part of the matrix, of size 1xNP where NP is adjusted,
* starting at csrc=0, with JA modified to reflect dropped procs.
*
* First processor to hold part of the matrix:
*
FIRST_PROC = MOD( ( JA-1 )/NB+CSRC, NPCOL )
*
* Calculate new JA one while dropping off unused processors.
*
JA_NEW = MOD( JA-1, NB ) + 1
*
* Save and compute new value of NP
*
NP_SAVE = NP
NP = ( JA_NEW+N-2 )/NB + 1
*
* Call utility routine that forms "standard-form" grid
*
CALL RESHAPE( ICTXT, INT_ONE, ICTXT_NEW, INT_ONE,
$ FIRST_PROC, INT_ONE, NP )
*
* Use new context from standard grid as context.
*
ICTXT_SAVE = ICTXT
ICTXT = ICTXT_NEW
*
* Get information about new grid.
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Drop out processors that do not have part of the matrix.
*
IF( MYROW .LT. 0 ) THEN
GOTO 1234
ENDIF
*
* ********************************
* Values reused throughout routine
*
* User-input value of partition size
*
PART_SIZE = NB
*
* Number of columns in each processor
*
MY_NUM_COLS = NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL )
*
* Offset in columns to beginning of main partition in each proc
*
IF ( MYCOL .EQ. 0 ) THEN
PART_OFFSET = PART_OFFSET+MOD( JA_NEW-1, PART_SIZE )
MY_NUM_COLS = MY_NUM_COLS - MOD(JA_NEW-1, PART_SIZE )
ENDIF
*
* Offset in elements
*
OFST = PART_OFFSET*LLDA
*
* Size of main (or odd) partition in each processor
*
ODD_SIZE = MY_NUM_COLS
IF ( MYCOL .LT. NP-1 ) THEN
ODD_SIZE = ODD_SIZE - MAX_BW
ENDIF
*
*
*
* Zero out solution to use to accumulate answer
*
NUMROC_SIZE =
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL)
*
DO 2279 J=1,NRHS
DO 4502 I=1,NUMROC_SIZE
X( (J-1)*LLDB + I ) = ZERO
4502 CONTINUE
2279 CONTINUE
*
DO 5642 I=1, (MAX_BW+2)*MAX_BW
WORK( I ) = ZERO
5642 CONTINUE
*
* Begin main code
*
*
**************************************
*
IF ( LSAME( TRANS, 'N' ) ) THEN
*
* Sizes of the extra triangles communicated bewtween processors
*
IF( MYCOL .GT. 0 ) THEN
*
DL_P_M= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
DL_P_N= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
*
DU_P_M= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
DU_P_N= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
ENDIF
*
IF( MYCOL .LT. NPCOL-1 ) THEN
*
DL_N_M= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
DL_N_N= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
*
DU_N_M= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
DU_N_N= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
ENDIF
*
*
* Use main partition in each processor to multiply locally
*
CALL SGBMV( TRANS, NUMROC_SIZE, NUMROC_SIZE, BWL, BWU, ONE,
$ A( OFST+1 ), LLDA, B(PART_OFFSET+1), 1, ZERO,
$ X( PART_OFFSET+1 ), 1 )
*
*
*
IF ( MYCOL .LT. NPCOL-1 ) THEN
*
* Do the multiplication of the triangle in the lower half
*
CALL SCOPY( DL_N_N,
$ B( NUMROC_SIZE-DL_N_N+1 ),
$ 1, WORK( MAX_BW*MAX_BW+1+BWL-DL_N_N ), 1 )
*
CALL STRMV( 'U', 'N', 'N', BWL,
$ A( LLDA*( NUMROC_SIZE-BWL )+1+BWU+BWL ), LLDA-1,
$ WORK( MAX_BW*MAX_BW+1 ), 1)
*
* Zero out extraneous elements caused by TRMV if any
*
IF( DL_N_M .GT. DL_N_N ) THEN
DO 10 I = DL_N_M-DL_N_N, DL_N_M
WORK( MAX_BW*MAX_BW+I ) = 0
10 CONTINUE
ENDIF
*
* Send the result to the neighbor
*
CALL SGESD2D( ICTXT, BWL, 1,
$ WORK( MAX_BW*MAX_BW+1 ), BWL, MYROW, MYCOL+1 )
*
ENDIF
*
IF ( MYCOL .GT. 0 ) THEN
*
DO 20 I=1, MAX_BW*( MAX_BW+2 )
WORK( I ) = ZERO
20 CONTINUE
*
* Do the multiplication of the triangle in the upper half
*
* Copy vector to workspace
*
CALL SCOPY( DU_P_N, B( 1 ), 1,
$ WORK( MAX_BW*MAX_BW+1 ), 1)
*
CALL STRMV(
$ 'L',
$ 'N',
$ 'N', BWU,
$ A( 1 ), LLDA-1,
$ WORK( MAX_BW*MAX_BW+1 ), 1 )
*
* Zero out extraneous results from TRMV if any
*
IF( DU_P_N .GT. DU_P_M ) THEN
DO 30 I=1, DU_P_N-DU_P_M
WORK( MAX_BW*MAX_BW+I ) = 0
30 CONTINUE
ENDIF
*
* Send result back
*
CALL SGESD2D( ICTXT, BWU, 1, WORK(MAX_BW*MAX_BW+1 ),
$ BWU, MYROW, MYCOL-1 )
*
* Receive vector result from neighboring processor
*
CALL SGERV2D( ICTXT, BWL, 1, WORK( MAX_BW*MAX_BW+1 ),
$ BWL, MYROW, MYCOL-1 )
*
* Do addition of received vector
*
CALL SAXPY( BWL, ONE,
$ WORK( MAX_BW*MAX_BW+1 ), 1,
$ X( 1 ), 1 )
*
ENDIF
*
*
*
IF( MYCOL .LT. NPCOL-1 ) THEN
*
* Receive returned result
*
CALL SGERV2D( ICTXT, BWU, 1, WORK( MAX_BW*MAX_BW+1 ),
$ BWU, MYROW, MYCOL+1 )
*
* Do addition of received vector
*
CALL SAXPY( BWU, ONE,
$ WORK( MAX_BW*MAX_BW+1 ), 1,
$ X( NUMROC_SIZE-BWU+1 ), 1)
*
ENDIF
*
*
ENDIF
*
* End of LSAME if
*
**************************************
*
IF ( LSAME( TRANS, 'T' ) ) THEN
*
* Sizes of the extra triangles communicated bewtween processors
*
IF( MYCOL .GT. 0 ) THEN
*
DL_P_M= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
DL_P_N= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
*
DU_P_M= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
DU_P_N= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
ENDIF
*
IF( MYCOL .LT. NPCOL-1 ) THEN
*
DL_N_M= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
DL_N_N= MIN( BWU,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
*
DU_N_M= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
DU_N_N= MIN( BWL,
$ NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
ENDIF
*
*
IF( MYCOL .GT. 0 ) THEN
* ...must send triangle in lower half of matrix to left
*
* Transpose triangle in preparation for sending
*
CALL SLATCPY( 'L', BWU, BWU, A( OFST+1 ),
$ LLDA-1, WORK( 1 ), MAX_BW )
*
* Send the triangle to neighboring processor to left
*
CALL STRSD2D(ICTXT, 'U', 'N',
$ BWU, BWU,
$ WORK( 1 ),
$ MAX_BW, MYROW, MYCOL-1 )
*
ENDIF
*
IF( MYCOL .LT. NPCOL-1 ) THEN
* ...must send triangle in upper half of matrix to right
*
* Transpose triangle in preparation for sending
*
CALL SLATCPY( 'U', BWL, BWL,
$ A( LLDA*( NUMROC_SIZE-BWL )+1+BWU+BWL ),
$ LLDA-1, WORK( 1 ), MAX_BW )
*
* Send the triangle to neighboring processor to right
*
CALL STRSD2D(ICTXT, 'L', 'N',
$ BWL, BWL,
$ WORK( 1 ),
$ MAX_BW, MYROW, MYCOL+1 )
*
ENDIF
*
* Use main partition in each processor to multiply locally
*
CALL SGBMV( TRANS, NUMROC_SIZE, NUMROC_SIZE, BWL, BWU, ONE,
$ A( OFST+1 ), LLDA, B(PART_OFFSET+1), 1, ZERO,
$ X( PART_OFFSET+1 ), 1 )
*
*
*
IF ( MYCOL .LT. NPCOL-1 ) THEN
*
* Do the multiplication of the triangle in the lower half
*
CALL SCOPY( DL_N_N,
$ B( NUMROC_SIZE-DL_N_N+1 ),
$ 1, WORK( MAX_BW*MAX_BW+1+BWU-DL_N_N ), 1 )
*
* Receive the triangle prior to multiplying by it.
*
CALL STRRV2D(ICTXT, 'U', 'N',
$ BWU, BWU,
$ WORK( 1 ), MAX_BW, MYROW, MYCOL+1 )
*
CALL STRMV( 'U', 'N', 'N', BWU,
$ WORK( 1 ), MAX_BW,
$ WORK( MAX_BW*MAX_BW+1 ), 1)
*
* Zero out extraneous elements caused by TRMV if any
*
IF( DL_N_M .GT. DL_N_N ) THEN
DO 40 I = DL_N_M-DL_N_N, DL_N_M
WORK( MAX_BW*MAX_BW+I ) = 0
40 CONTINUE
ENDIF
*
* Send the result to the neighbor
*
CALL SGESD2D( ICTXT, BWU, 1,
$ WORK( MAX_BW*MAX_BW+1 ), BWU, MYROW, MYCOL+1 )
*
ENDIF
*
IF ( MYCOL .GT. 0 ) THEN
*
DO 50 I=1, MAX_BW*( MAX_BW+2 )
WORK( I ) = ZERO
50 CONTINUE
*
* Do the multiplication of the triangle in the upper half
*
* Copy vector to workspace
*
CALL SCOPY( DU_P_N, B( 1 ), 1,
$ WORK( MAX_BW*MAX_BW+1 ), 1)
*
* Receive the triangle prior to multiplying by it.
*
CALL STRRV2D(ICTXT, 'L', 'N',
$ BWL, BWL,
$ WORK( 1 ), MAX_BW, MYROW, MYCOL-1 )
*
CALL STRMV(
$ 'L',
$ 'N',
$ 'N', BWL,
$ WORK( 1 ), MAX_BW,
$ WORK( MAX_BW*MAX_BW+1 ), 1 )
*
* Zero out extraneous results from TRMV if any
*
IF( DU_P_N .GT. DU_P_M ) THEN
DO 60 I=1, DU_P_N-DU_P_M
WORK( MAX_BW*MAX_BW+I ) = 0
60 CONTINUE
ENDIF
*
* Send result back
*
CALL SGESD2D( ICTXT, BWL, 1, WORK(MAX_BW*MAX_BW+1 ),
$ BWL, MYROW, MYCOL-1 )
*
* Receive vector result from neighboring processor
*
CALL SGERV2D( ICTXT, BWU, 1, WORK( MAX_BW*MAX_BW+1 ),
$ BWU, MYROW, MYCOL-1 )
*
* Do addition of received vector
*
CALL SAXPY( BWU, ONE,
$ WORK( MAX_BW*MAX_BW+1 ), 1,
$ X( 1 ), 1 )
*
ENDIF
*
*
*
IF( MYCOL .LT. NPCOL-1 ) THEN
*
* Receive returned result
*
CALL SGERV2D( ICTXT, BWL, 1, WORK( MAX_BW*MAX_BW+1 ),
$ BWL, MYROW, MYCOL+1 )
*
* Do addition of received vector
*
CALL SAXPY( BWL, ONE,
$ WORK( MAX_BW*MAX_BW+1 ), 1,
$ X( NUMROC_SIZE-BWL+1 ), 1)
*
ENDIF
*
*
ENDIF
*
* End of LSAME if
*
*
* Free BLACS space used to hold standard-form grid.
*
IF( ICTXT_SAVE .NE. ICTXT_NEW ) THEN
CALL BLACS_GRIDEXIT( ICTXT_NEW )
ENDIF
*
1234 CONTINUE
*
* Restore saved input parameters
*
ICTXT = ICTXT_SAVE
NP = NP_SAVE
*
*
RETURN
*
* End of PSBsBMV1
*
END
|