File: psinvchk.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (383 lines) | stat: -rw-r--r-- 14,313 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
      SUBROUTINE PSINVCHK( MATTYP, N, A, IA, JA, DESCA, IASEED, ANORM,
     $                     FRESID, RCOND, WORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 28, 2001
*
*     .. Scalar Arguments ..
      INTEGER            IA, IASEED, JA, N
      REAL               ANORM, FRESID, RCOND
*     ..
*     .. Array Arguments ..
      CHARACTER*3        MATTYP
      INTEGER            DESCA( * )
      REAL               A( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSINVCHK computes the scaled residual
*
*  || sub( A ) * inv( sub( A ) ) - I || / ( || sub( A ) || * N * eps ),
*
*  where sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1). to check the result
*  returned by the matrix inversion routines.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  MATTYP   (global input) CHARACTER*3
*           The type of the distributed matrix to be generated:
*           if MATTYP = 'GEN' then GENeral matrix,
*           if MATTYP = 'UTR' then Upper TRiangular matrix,
*           if MATTYP = 'LTR' then Lower TRiangular matrix,
*           if MATTYP = 'UPD' then (Upper) symmetric Positive Definite,
*           if MATTYP = 'LPD' then (Lower) symmetric Positive Definite,
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input) REAL pointer into the local memory
*          to an array of local dimension (LLD_A, LOCc(JA+N-1)).  On
*          entry, sub( A ) contains the distributed matrix inverse
*          computed by PSGETRI, PSPOTRI or PSTRTRI.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IASEED  (global input) INTEGER
*          Seed for the random generation of sub( A ).
*
*  ANORM   (global input) REAL
*          The 1-norm of the original matrix sub( A ).
*
*  FRESID  (global output) REAL
*          The inversion residual.
*
*  RCOND   (global output) REAL
*          The condition number of the original distributed matrix.
*          RCOND = || sub( A ) ||.|| sub( A )^{-1} || where ||A||
*          denotes the 1-norm of A.
*
*  WORK    (local workspace) REAL array, dimension
*             MAX(2*LOCr(N_A+MOD(IA-1,MB_A))*MB_A, LDW)
*          where LDW is the workspace requirement for the norm computa-
*          tions, see PSLANGE, PSLANSY and PSLANTR.
*
* =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO,          ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          AFORM, DIAG, UPLO
      INTEGER            ICTXT, ICURCOL, ICURROW, II, IIA, IPW, IROFF,
     $                   IW, J, JB, JJA, JN, KK, MYCOL, MYROW, NP,
     $                   NPCOL, NPROW
      REAL               AUXNORM, EPS, NRMINVAXA, TEMP
*     ..
*     .. Local Arrays ..
      INTEGER            DESCW( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, INFOG2L, PSGEMM,
     $                   PSLASET, PSMATGEN, PSSYMM, PSTRMM
*     ..
*     .. External Functions ..
      LOGICAL            LSAMEN
      INTEGER            ICEIL, NUMROC
      REAL               PSLAMCH, PSLANGE, PSLANSY, PSLANTR
      EXTERNAL           ICEIL, LSAMEN, NUMROC, PSLAMCH, PSLANGE,
     $                   PSLANSY, PSLANTR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
      EPS = PSLAMCH( DESCA( CTXT_ ), 'eps' )
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Compute the condition number
*
      IF( LSAMEN( 1, MATTYP( 1:1 ), 'U' ) ) THEN
         UPLO = 'U'
      ELSE
         UPLO = 'L'
      END IF
*
      IF( LSAMEN( 3, MATTYP, 'GEN' ) ) THEN
*
         AFORM = 'N'
         DIAG = 'D'
         AUXNORM = PSLANGE( '1', N, N, A, IA, JA, DESCA, WORK )
*
      ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
*
         AFORM = 'N'
         DIAG = 'D'
         AUXNORM = PSLANTR( '1', UPLO, 'Non unit', N, N, A, IA, JA,
     $                      DESCA, WORK )
      ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'PD' ) ) THEN
*
         AFORM = 'S'
         DIAG = 'D'
         AUXNORM = PSLANSY( '1', UPLO, N, A, IA, JA, DESCA, WORK )
*
      END IF
      RCOND   = ANORM*AUXNORM
*
*     Compute inv(A)*A
*
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              ICURROW, ICURCOL )
*
*     Define array descriptor for working array WORK
*
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, ICURROW, NPROW )
      CALL DESCSET( DESCW, N+IROFF, DESCA( NB_ ), DESCA( MB_ ),
     $              DESCA( NB_ ), ICURROW, ICURCOL, DESCA( CTXT_ ),
     $              MAX( 1, NP ) )
      IPW = DESCW( LLD_ ) * DESCW( NB_ ) + 1
*
      IF( MYROW.EQ.ICURROW ) THEN
         II = IROFF + 1
         NP = NP - IROFF
      ELSE
         II = 1
      END IF
      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
      JB = JN - JA + 1
*
*     Handle first block separately, regenerate a block of columns of A
*
      IW = IROFF + 1
      IF( MYCOL.EQ.ICURCOL ) THEN
         IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
            CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ), DESCA( N_ ),
     $                     DESCW( MB_ ), DESCW( NB_ ), WORK,
     $                     DESCW( LLD_ ), DESCA( RSRC_ ),
     $                     DESCA( CSRC_ ), IASEED, IIA-1, NP,
     $                     JJA-1, JB, MYROW, MYCOL, NPROW, NPCOL )
            IF( LSAMEN( 3, MATTYP, 'UTR' ) ) THEN
               CALL PSLASET( 'Lower', N-1, JB, ZERO, ZERO, WORK, IW+1,
     $                       1, DESCW )
            ELSE
               CALL PSLASET( 'Upper', JB-1, JB-1, ZERO, ZERO, WORK, IW,
     $                       2, DESCW )
            END IF
         ELSE
            CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ), DESCA( N_ ),
     $                     DESCW( MB_ ), DESCW( NB_ ), WORK( IPW ),
     $                     DESCW( LLD_ ), DESCA( RSRC_ ),
     $                     DESCA( CSRC_ ), IASEED,
     $                     IIA-1, NP, JJA-1, JB, MYROW, MYCOL, NPROW,
     $                     NPCOL )
         END IF
      END IF
*
*     Multiply A^{-1}*A
*
      IF( LSAMEN( 3, MATTYP, 'GEN' ) ) THEN
*
         CALL PSGEMM( 'No tranpose', 'No transpose', N, JB, N, ONE, A,
     $                IA, JA, DESCA, WORK( IPW ), IW, 1, DESCW, ZERO,
     $                WORK, IW, 1, DESCW )
*
      ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
*
         CALL PSTRMM( 'Left', UPLO, 'No tranpose', 'Non unit', N, JB,
     $                ONE, A, IA, JA, DESCA, WORK, IW, 1, DESCW )
*
      ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'PD' ) ) THEN
*
         CALL PSSYMM( 'Left', UPLO, N, JB, ONE, A, IA, JA, DESCA,
     $                WORK( IPW ), IW, 1, DESCW, ZERO, WORK, IW, 1,
     $                DESCW )
*
      END IF
*
*     subtract the identity matrix to the diagonal block of these cols
*
      IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
         DO 10 KK = 0, JB-1
            WORK( II+KK*(DESCW(LLD_)+1) ) =
     $                 WORK( II+KK*(DESCW( LLD_ )+1) )-ONE
   10    CONTINUE
      END IF
*
      NRMINVAXA = PSLANGE( '1', N, JB, WORK, IW, 1, DESCW, WORK( IPW ) )
*
      IF( MYROW.EQ.ICURROW )
     $   II = II + JB
      IF( MYCOL.EQ.ICURCOL )
     $   JJA = JJA + JB
      ICURROW = MOD( ICURROW+1, NPROW )
      ICURCOL = MOD( ICURCOL+1, NPCOL )
      DESCW( CSRC_ ) = ICURCOL
*
      DO 30 J = JN+1, JA+N-1, DESCA( NB_ )
*
         JB = MIN( N-J+JA, DESCA( NB_ ) )
*
*        regenerate a block of columns of A
*
         IF( MYCOL.EQ.ICURCOL ) THEN
            IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
               CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ),
     $                        DESCA( N_ ), DESCW( MB_ ), DESCW( NB_ ),
     $                        WORK, DESCW( LLD_ ), DESCA( RSRC_ ),
     $                        DESCA( CSRC_ ),
     $                        IASEED, IIA-1, NP, JJA-1, JB, MYROW,
     $                        MYCOL, NPROW, NPCOL )
               IF( LSAMEN( 3, MATTYP, 'UTR' ) ) THEN
                  CALL PSLASET( 'Lower', JA+N-J-1, JB, ZERO, ZERO,
     $                       WORK, IW+J-JA+1, 1, DESCW )
               ELSE
                  CALL PSLASET( 'All', J-JA, JB, ZERO, ZERO, WORK, IW,
     $                          1, DESCW )
                  CALL PSLASET( 'Upper', JB-1, JB-1, ZERO, ZERO,
     $                          WORK, IW+J-JA, 2, DESCW )
               END IF
            ELSE
               CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ),
     $                        DESCA( N_ ), DESCW( MB_ ), DESCW( NB_ ),
     $                        WORK( IPW ), DESCW( LLD_ ),
     $                        DESCA( RSRC_ ), DESCA( CSRC_ ), IASEED,
     $                        IIA-1, NP,
     $                        JJA-1, JB, MYROW, MYCOL, NPROW, NPCOL )
            END IF
         END IF
*
*        Multiply A^{-1}*A
*
         IF( LSAMEN( 3, MATTYP, 'GEN' ) ) THEN
*
            CALL PSGEMM( 'No tranpose', 'No transpose', N, JB, N, ONE,
     $                   A, IA, JA, DESCA, WORK( IPW ), IW, 1, DESCW,
     $                   ZERO, WORK, IW, 1, DESCW )
*
         ELSE IF( LSAMEN( 2, MATTYP(2:3), 'TR' ) ) THEN
*
            CALL PSTRMM( 'Left', UPLO, 'No tranpose', 'Non unit', N, JB,
     $                   ONE, A, IA, JA, DESCA, WORK, IW, 1, DESCW )
*
         ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'PD' ) ) THEN
*
            CALL PSSYMM( 'Left', UPLO, N, JB, ONE, A, IA, JA, DESCA,
     $                   WORK(IPW), IW, 1, DESCW, ZERO, WORK, IW, 1,
     $                   DESCW )
*
         END IF
*
*        subtract the identity matrix to the diagonal block of these
*        cols
*
         IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
            DO 20 KK = 0, JB-1
               WORK( II+KK*(DESCW( LLD_ )+1) ) =
     $                   WORK( II+KK*(DESCW( LLD_ )+1) ) - ONE
   20       CONTINUE
         END IF
*
*        Compute the 1-norm of these JB cols
*
         TEMP = PSLANGE( '1', N, JB, WORK, IW, 1, DESCW, WORK( IPW ) )
         NRMINVAXA = MAX( TEMP, NRMINVAXA )
*
         IF( MYROW.EQ.ICURROW )
     $      II = II + JB
         IF( MYCOL.EQ.ICURCOL )
     $      JJA = JJA + JB
         ICURROW = MOD( ICURROW+1, NPROW )
         ICURCOL = MOD( ICURCOL+1, NPCOL )
         DESCW( CSRC_ ) = ICURCOL
*
   30 CONTINUE
*
*     Compute the scaled residual
*
      FRESID = NRMINVAXA / ( N * EPS * ANORM )
*
      RETURN
*
*     End of PSINVCHK
*
      END