1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
SUBROUTINE PSINVCHK( MATTYP, N, A, IA, JA, DESCA, IASEED, ANORM,
$ FRESID, RCOND, WORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 28, 2001
*
* .. Scalar Arguments ..
INTEGER IA, IASEED, JA, N
REAL ANORM, FRESID, RCOND
* ..
* .. Array Arguments ..
CHARACTER*3 MATTYP
INTEGER DESCA( * )
REAL A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSINVCHK computes the scaled residual
*
* || sub( A ) * inv( sub( A ) ) - I || / ( || sub( A ) || * N * eps ),
*
* where sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1). to check the result
* returned by the matrix inversion routines.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* MATTYP (global input) CHARACTER*3
* The type of the distributed matrix to be generated:
* if MATTYP = 'GEN' then GENeral matrix,
* if MATTYP = 'UTR' then Upper TRiangular matrix,
* if MATTYP = 'LTR' then Lower TRiangular matrix,
* if MATTYP = 'UPD' then (Upper) symmetric Positive Definite,
* if MATTYP = 'LPD' then (Lower) symmetric Positive Definite,
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input) REAL pointer into the local memory
* to an array of local dimension (LLD_A, LOCc(JA+N-1)). On
* entry, sub( A ) contains the distributed matrix inverse
* computed by PSGETRI, PSPOTRI or PSTRTRI.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* IASEED (global input) INTEGER
* Seed for the random generation of sub( A ).
*
* ANORM (global input) REAL
* The 1-norm of the original matrix sub( A ).
*
* FRESID (global output) REAL
* The inversion residual.
*
* RCOND (global output) REAL
* The condition number of the original distributed matrix.
* RCOND = || sub( A ) ||.|| sub( A )^{-1} || where ||A||
* denotes the 1-norm of A.
*
* WORK (local workspace) REAL array, dimension
* MAX(2*LOCr(N_A+MOD(IA-1,MB_A))*MB_A, LDW)
* where LDW is the workspace requirement for the norm computa-
* tions, see PSLANGE, PSLANSY and PSLANTR.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
CHARACTER AFORM, DIAG, UPLO
INTEGER ICTXT, ICURCOL, ICURROW, II, IIA, IPW, IROFF,
$ IW, J, JB, JJA, JN, KK, MYCOL, MYROW, NP,
$ NPCOL, NPROW
REAL AUXNORM, EPS, NRMINVAXA, TEMP
* ..
* .. Local Arrays ..
INTEGER DESCW( DLEN_ )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCSET, INFOG2L, PSGEMM,
$ PSLASET, PSMATGEN, PSSYMM, PSTRMM
* ..
* .. External Functions ..
LOGICAL LSAMEN
INTEGER ICEIL, NUMROC
REAL PSLAMCH, PSLANGE, PSLANSY, PSLANTR
EXTERNAL ICEIL, LSAMEN, NUMROC, PSLAMCH, PSLANGE,
$ PSLANSY, PSLANTR
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
EPS = PSLAMCH( DESCA( CTXT_ ), 'eps' )
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Compute the condition number
*
IF( LSAMEN( 1, MATTYP( 1:1 ), 'U' ) ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
*
IF( LSAMEN( 3, MATTYP, 'GEN' ) ) THEN
*
AFORM = 'N'
DIAG = 'D'
AUXNORM = PSLANGE( '1', N, N, A, IA, JA, DESCA, WORK )
*
ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
*
AFORM = 'N'
DIAG = 'D'
AUXNORM = PSLANTR( '1', UPLO, 'Non unit', N, N, A, IA, JA,
$ DESCA, WORK )
ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'PD' ) ) THEN
*
AFORM = 'S'
DIAG = 'D'
AUXNORM = PSLANSY( '1', UPLO, N, A, IA, JA, DESCA, WORK )
*
END IF
RCOND = ANORM*AUXNORM
*
* Compute inv(A)*A
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ ICURROW, ICURCOL )
*
* Define array descriptor for working array WORK
*
IROFF = MOD( IA-1, DESCA( MB_ ) )
NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, ICURROW, NPROW )
CALL DESCSET( DESCW, N+IROFF, DESCA( NB_ ), DESCA( MB_ ),
$ DESCA( NB_ ), ICURROW, ICURCOL, DESCA( CTXT_ ),
$ MAX( 1, NP ) )
IPW = DESCW( LLD_ ) * DESCW( NB_ ) + 1
*
IF( MYROW.EQ.ICURROW ) THEN
II = IROFF + 1
NP = NP - IROFF
ELSE
II = 1
END IF
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN - JA + 1
*
* Handle first block separately, regenerate a block of columns of A
*
IW = IROFF + 1
IF( MYCOL.EQ.ICURCOL ) THEN
IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ), DESCA( N_ ),
$ DESCW( MB_ ), DESCW( NB_ ), WORK,
$ DESCW( LLD_ ), DESCA( RSRC_ ),
$ DESCA( CSRC_ ), IASEED, IIA-1, NP,
$ JJA-1, JB, MYROW, MYCOL, NPROW, NPCOL )
IF( LSAMEN( 3, MATTYP, 'UTR' ) ) THEN
CALL PSLASET( 'Lower', N-1, JB, ZERO, ZERO, WORK, IW+1,
$ 1, DESCW )
ELSE
CALL PSLASET( 'Upper', JB-1, JB-1, ZERO, ZERO, WORK, IW,
$ 2, DESCW )
END IF
ELSE
CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ), DESCA( N_ ),
$ DESCW( MB_ ), DESCW( NB_ ), WORK( IPW ),
$ DESCW( LLD_ ), DESCA( RSRC_ ),
$ DESCA( CSRC_ ), IASEED,
$ IIA-1, NP, JJA-1, JB, MYROW, MYCOL, NPROW,
$ NPCOL )
END IF
END IF
*
* Multiply A^{-1}*A
*
IF( LSAMEN( 3, MATTYP, 'GEN' ) ) THEN
*
CALL PSGEMM( 'No tranpose', 'No transpose', N, JB, N, ONE, A,
$ IA, JA, DESCA, WORK( IPW ), IW, 1, DESCW, ZERO,
$ WORK, IW, 1, DESCW )
*
ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
*
CALL PSTRMM( 'Left', UPLO, 'No tranpose', 'Non unit', N, JB,
$ ONE, A, IA, JA, DESCA, WORK, IW, 1, DESCW )
*
ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'PD' ) ) THEN
*
CALL PSSYMM( 'Left', UPLO, N, JB, ONE, A, IA, JA, DESCA,
$ WORK( IPW ), IW, 1, DESCW, ZERO, WORK, IW, 1,
$ DESCW )
*
END IF
*
* subtract the identity matrix to the diagonal block of these cols
*
IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
DO 10 KK = 0, JB-1
WORK( II+KK*(DESCW(LLD_)+1) ) =
$ WORK( II+KK*(DESCW( LLD_ )+1) )-ONE
10 CONTINUE
END IF
*
NRMINVAXA = PSLANGE( '1', N, JB, WORK, IW, 1, DESCW, WORK( IPW ) )
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
IF( MYCOL.EQ.ICURCOL )
$ JJA = JJA + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
DESCW( CSRC_ ) = ICURCOL
*
DO 30 J = JN+1, JA+N-1, DESCA( NB_ )
*
JB = MIN( N-J+JA, DESCA( NB_ ) )
*
* regenerate a block of columns of A
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( LSAMEN( 2, MATTYP( 2:3 ), 'TR' ) ) THEN
CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ),
$ DESCA( N_ ), DESCW( MB_ ), DESCW( NB_ ),
$ WORK, DESCW( LLD_ ), DESCA( RSRC_ ),
$ DESCA( CSRC_ ),
$ IASEED, IIA-1, NP, JJA-1, JB, MYROW,
$ MYCOL, NPROW, NPCOL )
IF( LSAMEN( 3, MATTYP, 'UTR' ) ) THEN
CALL PSLASET( 'Lower', JA+N-J-1, JB, ZERO, ZERO,
$ WORK, IW+J-JA+1, 1, DESCW )
ELSE
CALL PSLASET( 'All', J-JA, JB, ZERO, ZERO, WORK, IW,
$ 1, DESCW )
CALL PSLASET( 'Upper', JB-1, JB-1, ZERO, ZERO,
$ WORK, IW+J-JA, 2, DESCW )
END IF
ELSE
CALL PSMATGEN( ICTXT, AFORM, DIAG, DESCA( M_ ),
$ DESCA( N_ ), DESCW( MB_ ), DESCW( NB_ ),
$ WORK( IPW ), DESCW( LLD_ ),
$ DESCA( RSRC_ ), DESCA( CSRC_ ), IASEED,
$ IIA-1, NP,
$ JJA-1, JB, MYROW, MYCOL, NPROW, NPCOL )
END IF
END IF
*
* Multiply A^{-1}*A
*
IF( LSAMEN( 3, MATTYP, 'GEN' ) ) THEN
*
CALL PSGEMM( 'No tranpose', 'No transpose', N, JB, N, ONE,
$ A, IA, JA, DESCA, WORK( IPW ), IW, 1, DESCW,
$ ZERO, WORK, IW, 1, DESCW )
*
ELSE IF( LSAMEN( 2, MATTYP(2:3), 'TR' ) ) THEN
*
CALL PSTRMM( 'Left', UPLO, 'No tranpose', 'Non unit', N, JB,
$ ONE, A, IA, JA, DESCA, WORK, IW, 1, DESCW )
*
ELSE IF( LSAMEN( 2, MATTYP( 2:3 ), 'PD' ) ) THEN
*
CALL PSSYMM( 'Left', UPLO, N, JB, ONE, A, IA, JA, DESCA,
$ WORK(IPW), IW, 1, DESCW, ZERO, WORK, IW, 1,
$ DESCW )
*
END IF
*
* subtract the identity matrix to the diagonal block of these
* cols
*
IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
DO 20 KK = 0, JB-1
WORK( II+KK*(DESCW( LLD_ )+1) ) =
$ WORK( II+KK*(DESCW( LLD_ )+1) ) - ONE
20 CONTINUE
END IF
*
* Compute the 1-norm of these JB cols
*
TEMP = PSLANGE( '1', N, JB, WORK, IW, 1, DESCW, WORK( IPW ) )
NRMINVAXA = MAX( TEMP, NRMINVAXA )
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
IF( MYCOL.EQ.ICURCOL )
$ JJA = JJA + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
DESCW( CSRC_ ) = ICURCOL
*
30 CONTINUE
*
* Compute the scaled residual
*
FRESID = NRMINVAXA / ( N * EPS * ANORM )
*
RETURN
*
* End of PSINVCHK
*
END
|