File: psmatgen.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (547 lines) | stat: -rw-r--r-- 17,992 bytes parent folder | download | duplicates (24)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
      SUBROUTINE PSMATGEN( ICTXT, AFORM, DIAG, M, N, MB, NB, A, LDA,
     $                     IAROW, IACOL, ISEED, IROFF, IRNUM, ICOFF,
     $                     ICNUM, MYROW, MYCOL, NPROW, NPCOL )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER*1        AFORM, DIAG
      INTEGER            IACOL, IAROW, ICNUM, ICOFF, ICTXT, IRNUM,
     $                   IROFF, ISEED, LDA, M, MB, MYCOL, MYROW, N,
     $                   NB, NPCOL, NPROW
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  PSMATGEN : Parallel Real Single precision MATrix GENerator.
*  Generate (or regenerate) a distributed matrix A (or sub-matrix of A).
*
*  Arguments
*  =========
*
*  ICTXT   (global input) INTEGER
*          The BLACS context handle, indicating the global context of
*          the operation. The context itself is global.
*
*  AFORM   (global input) CHARACTER*1
*          if AFORM = 'S' : A is returned is a symmetric matrix.
*          if AFORM = 'H' : A is returned is a Hermitian matrix.
*          if AFORM = 'T' : A is overwritten with the transpose of
*                           what would normally be generated.
*          if AFORM = 'C' : A is overwritten with the conjugate trans-
*                           pose of what would normally be generated.
*          otherwise a random matrix is generated.
*
*  DIAG    (global input) CHARACTER*1
*          if DIAG = 'D' : A is diagonally dominant.
*
*  M       (global input) INTEGER
*          The number of rows in the generated distributed matrix.
*
*  N       (global input) INTEGER
*          The number of columns in the generated distributed
*          matrix.
*
*  MB      (global input) INTEGER
*          The row blocking factor of the distributed matrix A.
*
*  NB      (global input) INTEGER
*          The column blocking factor of the distributed matrix A.
*
*  A       (local output) REAL, pointer into the local memory
*          to an array of dimension ( LDA, * ) containing the local
*          pieces of the distributed matrix.
*
*  LDA     (local input) INTEGER
*          The leading dimension of the array containing the local
*          pieces of the distributed matrix A.
*
*  IAROW   (global input) INTEGER
*          The row processor coordinate which holds the first block
*          of the distributed matrix A.
*
*  IACOL   (global input) INTEGER
*          The column processor coordinate which holds the first
*          block of the distributed matrix A.
*
*  ISEED   (global input) INTEGER
*          The seed number to generate the distributed matrix A.
*
*  IROFF   (local input) INTEGER
*          The number of local rows of A that have already been
*          generated.  It should be a multiple of MB.
*
*  IRNUM   (local input) INTEGER
*          The number of local rows to be generated.
*
*  ICOFF   (local input) INTEGER
*          The number of local columns of A that have already been
*          generated.  It should be a multiple of NB.
*
*  ICNUM   (local input) INTEGER
*          The number of local columns to be generated.
*
*  MYROW   (local input) INTEGER
*          The row process coordinate of the calling process.
*
*  MYCOL   (local input) INTEGER
*          The column process coordinate of the calling process.
*
*  NPROW   (global input) INTEGER
*          The number of process rows in the grid.
*
*  NPCOL   (global input) INTEGER
*          The number of process columns in the grid.
*
*  Notes
*  =====
*
*  The code is originally developed by David Walker, ORNL,
*  and modified by Jaeyoung Choi, ORNL.
*
*  Reference: G. Fox et al.
*  Section 12.3 of "Solving problems on concurrent processors Vol. I"
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MULT0, MULT1, IADD0, IADD1
      PARAMETER        ( MULT0=20077, MULT1=16838, IADD0=12345,
     $                   IADD1=0 )
      REAL               ONE, TWO
      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            SYMM, HERM, TRAN
      INTEGER            I, IC, IK, INFO, IOFFC, IOFFR, IR, J, JK,
     $                   JUMP1, JUMP2, JUMP3, JUMP4, JUMP5, JUMP6,
     $                   JUMP7, MAXMN, MEND, MOFF, MP, MRCOL, MRROW,
     $                   NEND, NOFF, NPMB, NQ, NQNB
*     ..
*     .. Local Arrays ..
      INTEGER            IADD(2), IA1(2), IA2(2), IA3(2), IA4(2),
     $                   IA5(2), IB1(2), IB2(2), IB3(2), IC1(2), IC2(2),
     $                   IC3(2), IC4(2), IC5(2), IRAN1(2), IRAN2(2),
     $                   IRAN3(2), IRAN4(2), ITMP1(2), ITMP2(2),
     $                   ITMP3(2), JSEED(2), MULT(2)
*     ..
*     .. External Subroutines ..
      EXTERNAL           JUMPIT, PXERBLA, SETRAN, XJUMPM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MOD
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, NUMROC
      REAL               PSRAND
      EXTERNAL           ICEIL, NUMROC, LSAME, PSRAND
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      MP   = NUMROC( M, MB, MYROW, IAROW, NPROW )
      NQ   = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
      SYMM = LSAME( AFORM, 'S' )
      HERM = LSAME( AFORM, 'H' )
      TRAN = LSAME( AFORM, 'T' )
*
      INFO = 0
      IF( .NOT.LSAME( DIAG, 'D' ) .AND.
     $         .NOT.LSAME( DIAG, 'N' )        ) THEN
         INFO = 3
      ELSE IF( SYMM.OR.HERM ) THEN
         IF( M.NE.N ) THEN
            INFO = 5
         ELSE IF( MB.NE.NB ) THEN
            INFO = 7
         END IF
      ELSE IF( M.LT.0 ) THEN
         INFO = 4
      ELSE IF( N.LT.0 ) THEN
         INFO = 5
      ELSE IF( MB.LT.1 ) THEN
         INFO = 6
      ELSE IF( NB.LT.1 ) THEN
         INFO = 7
      ELSE IF( LDA.LT.0 ) THEN
         INFO = 9
      ELSE IF( ( IAROW.LT.0 ).OR.( IAROW.GE.NPROW ) ) THEN
         INFO = 10
      ELSE IF( ( IACOL.LT.0 ).OR.( IACOL.GE.NPCOL ) ) THEN
         INFO = 11
      ELSE IF( MOD(IROFF,MB).GT.0 ) THEN
         INFO = 13
      ELSE IF( IRNUM.GT.(MP-IROFF) ) THEN
         INFO = 14
      ELSE IF( MOD(ICOFF,NB).GT.0 ) THEN
         INFO = 15
      ELSE IF( ICNUM.GT.(NQ-ICOFF) ) THEN
         INFO = 16
      ELSE IF( ( MYROW.LT.0 ).OR.( MYROW.GE.NPROW ) ) THEN
         INFO = 17
      ELSE IF( ( MYCOL.LT.0 ).OR.( MYCOL.GE.NPCOL ) ) THEN
         INFO = 18
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PSMATGEN', INFO )
         RETURN
      END IF
*
      MRROW = MOD( NPROW+MYROW-IAROW, NPROW )
      MRCOL = MOD( NPCOL+MYCOL-IACOL, NPCOL )
      NPMB  = NPROW * MB
      NQNB  = NPCOL * NB
      MOFF  = IROFF / MB
      NOFF  = ICOFF / NB
      MEND  = ICEIL(IRNUM, MB) + MOFF
      NEND  = ICEIL(ICNUM, NB) + NOFF
*
      MULT(1)  = MULT0
      MULT(2)  = MULT1
      IADD(1)  = IADD0
      IADD(2)  = IADD1
      JSEED(1) = ISEED
      JSEED(2) = 0
*
*     Symmetric or Hermitian matrix will be generated.
*
      IF( SYMM.OR.HERM ) THEN
*
*        First, generate the lower triangular part (with diagonal block)
*
         JUMP1 = 1
         JUMP2 = NPMB
         JUMP3 = M
         JUMP4 = NQNB
         JUMP5 = NB
         JUMP6 = MRCOL
         JUMP7 = MB*MRROW
*
         CALL XJUMPM( JUMP1, MULT, IADD, JSEED, IRAN1, IA1,   IC1 )
         CALL XJUMPM( JUMP2, MULT, IADD, IRAN1, ITMP1, IA2,   IC2 )
         CALL XJUMPM( JUMP3, MULT, IADD, IRAN1, ITMP1, IA3,   IC3 )
         CALL XJUMPM( JUMP4, IA3,  IC3,  IRAN1, ITMP1, IA4,   IC4 )
         CALL XJUMPM( JUMP5, IA3,  IC3,  IRAN1, ITMP1, IA5,   IC5 )
         CALL XJUMPM( JUMP6, IA5,  IC5,  IRAN1, ITMP3, ITMP1, ITMP2 )
         CALL XJUMPM( JUMP7, MULT, IADD, ITMP3, IRAN1, ITMP1, ITMP2 )
         CALL XJUMPM( NOFF,  IA4,  IC4,  IRAN1, ITMP1, ITMP2, ITMP3 )
         CALL XJUMPM( MOFF,  IA2,  IC2,  ITMP1, IRAN1, ITMP2, ITMP3 )
         CALL SETRAN( IRAN1, IA1,  IC1 )
*
         DO 10 I = 1, 2
            IB1(I) = IRAN1(I)
            IB2(I) = IRAN1(I)
            IB3(I) = IRAN1(I)
   10    CONTINUE
*
         JK = 1
         DO 80 IC = NOFF+1, NEND
            IOFFC = ((IC-1)*NPCOL+MRCOL) * NB
            DO 70 I = 1, NB
               IF( JK .GT. ICNUM ) GO TO 90
*
               IK = 1
               DO 50 IR = MOFF+1, MEND
                  IOFFR = ((IR-1)*NPROW+MRROW) * MB
*
                  IF( IOFFR .GT. IOFFC ) THEN
                     DO 20 J = 1, MB
                        IF( IK .GT. IRNUM ) GO TO 60
                        A(IK,JK) = ONE - TWO*PSRAND(0)
                        IK = IK + 1
   20                CONTINUE
*
                  ELSE IF( IOFFC .EQ. IOFFR ) THEN
                     IK = IK + I - 1
                     IF( IK .GT. IRNUM ) GO TO 60
                     DO 30 J = 1, I-1
                        A(IK,JK) = ONE - TWO*PSRAND(0)
   30                CONTINUE
                     A(IK,JK) = ONE - TWO*PSRAND(0)
                     DO 40 J = 1, MB-I
                        IF( IK+J .GT. IRNUM ) GO TO 60
                        A(IK+J,JK) = ONE - TWO*PSRAND(0)
                        A(IK,JK+J) = A(IK+J,JK)
   40                CONTINUE
                     IK = IK + MB - I + 1
                  ELSE
                     IK = IK + MB
                  END IF
*
                  CALL JUMPIT( IA2, IC2, IB1, IRAN2 )
                  IB1(1) = IRAN2(1)
                  IB1(2) = IRAN2(2)
   50          CONTINUE
*
   60          CONTINUE
               JK = JK + 1
               CALL JUMPIT( IA3, IC3, IB2, IRAN3 )
               IB1(1) = IRAN3(1)
               IB1(2) = IRAN3(2)
               IB2(1) = IRAN3(1)
               IB2(2) = IRAN3(2)
   70       CONTINUE
*
            CALL JUMPIT( IA4, IC4, IB3, IRAN4 )
            IB1(1) = IRAN4(1)
            IB1(2) = IRAN4(2)
            IB2(1) = IRAN4(1)
            IB2(2) = IRAN4(2)
            IB3(1) = IRAN4(1)
            IB3(2) = IRAN4(2)
   80    CONTINUE
*
*        Next, generate the upper triangular part.
*
   90    CONTINUE
         MULT(1)  = MULT0
         MULT(2)  = MULT1
         IADD(1)  = IADD0
         IADD(2)  = IADD1
         JSEED(1) = ISEED
         JSEED(2) = 0
*
         JUMP1 = 1
         JUMP2 = NQNB
         JUMP3 = N
         JUMP4 = NPMB
         JUMP5 = MB
         JUMP6 = MRROW
         JUMP7 = NB*MRCOL
*
         CALL XJUMPM( JUMP1, MULT, IADD, JSEED, IRAN1, IA1,   IC1 )
         CALL XJUMPM( JUMP2, MULT, IADD, IRAN1, ITMP1, IA2,   IC2 )
         CALL XJUMPM( JUMP3, MULT, IADD, IRAN1, ITMP1, IA3,   IC3 )
         CALL XJUMPM( JUMP4, IA3,  IC3,  IRAN1, ITMP1, IA4,   IC4 )
         CALL XJUMPM( JUMP5, IA3,  IC3,  IRAN1, ITMP1, IA5,   IC5 )
         CALL XJUMPM( JUMP6, IA5,  IC5,  IRAN1, ITMP3, ITMP1, ITMP2 )
         CALL XJUMPM( JUMP7, MULT, IADD, ITMP3, IRAN1, ITMP1, ITMP2 )
         CALL XJUMPM( MOFF,  IA4,  IC4,  IRAN1, ITMP1, ITMP2, ITMP3 )
         CALL XJUMPM( NOFF,  IA2,  IC2,  ITMP1, IRAN1, ITMP2, ITMP3 )
         CALL SETRAN( IRAN1, IA1,  IC1 )
*
         DO 100 I = 1, 2
            IB1(I) = IRAN1(I)
            IB2(I) = IRAN1(I)
            IB3(I) = IRAN1(I)
  100    CONTINUE
*
         IK = 1
         DO 150 IR = MOFF+1, MEND
            IOFFR = ((IR-1)*NPROW+MRROW) * MB
            DO 140 J = 1, MB
               IF( IK .GT. IRNUM ) GO TO 160
               JK = 1
               DO 120 IC = NOFF+1, NEND
                  IOFFC = ((IC-1)*NPCOL+MRCOL) * NB
                  IF( IOFFC .GT. IOFFR ) THEN
                     DO 110 I = 1, NB
                        IF( JK .GT. ICNUM ) GO TO 130
                        A(IK,JK) = ONE - TWO*PSRAND(0)
                        JK = JK + 1
  110                CONTINUE
                  ELSE
                     JK = JK + NB
                  END IF
                  CALL JUMPIT( IA2, IC2, IB1, IRAN2 )
                  IB1(1) = IRAN2(1)
                  IB1(2) = IRAN2(2)
  120          CONTINUE
*
  130          CONTINUE
               IK = IK + 1
               CALL JUMPIT( IA3, IC3, IB2, IRAN3 )
               IB1(1) = IRAN3(1)
               IB1(2) = IRAN3(2)
               IB2(1) = IRAN3(1)
               IB2(2) = IRAN3(2)
  140       CONTINUE
*
            CALL JUMPIT( IA4, IC4, IB3, IRAN4 )
            IB1(1) = IRAN4(1)
            IB1(2) = IRAN4(2)
            IB2(1) = IRAN4(1)
            IB2(2) = IRAN4(2)
            IB3(1) = IRAN4(1)
            IB3(2) = IRAN4(2)
  150    CONTINUE
  160    CONTINUE
*
*     (Conjugate) Transposed matrix A will be generated.
*
      ELSE IF( TRAN .OR. LSAME( AFORM, 'C' ) ) THEN
*
         JUMP1 = 1
         JUMP2 = NQNB
         JUMP3 = N
         JUMP4 = NPMB
         JUMP5 = MB
         JUMP6 = MRROW
         JUMP7 = NB*MRCOL
*
         CALL XJUMPM( JUMP1, MULT, IADD, JSEED, IRAN1, IA1,   IC1 )
         CALL XJUMPM( JUMP2, MULT, IADD, IRAN1, ITMP1, IA2,   IC2 )
         CALL XJUMPM( JUMP3, MULT, IADD, IRAN1, ITMP1, IA3,   IC3 )
         CALL XJUMPM( JUMP4, IA3,  IC3,  IRAN1, ITMP1, IA4,   IC4 )
         CALL XJUMPM( JUMP5, IA3,  IC3,  IRAN1, ITMP1, IA5,   IC5 )
         CALL XJUMPM( JUMP6, IA5,  IC5,  IRAN1, ITMP3, ITMP1, ITMP2 )
         CALL XJUMPM( JUMP7, MULT, IADD, ITMP3, IRAN1, ITMP1, ITMP2 )
         CALL XJUMPM( MOFF,  IA4,  IC4,  IRAN1, ITMP1, ITMP2, ITMP3 )
         CALL XJUMPM( NOFF,  IA2,  IC2,  ITMP1, IRAN1, ITMP2, ITMP3 )
         CALL SETRAN( IRAN1, IA1,  IC1 )
*
         DO 170 I = 1, 2
            IB1(I) = IRAN1(I)
            IB2(I) = IRAN1(I)
            IB3(I) = IRAN1(I)
  170    CONTINUE
*
         IK = 1
         DO 220 IR = MOFF+1, MEND
            IOFFR = ((IR-1)*NPROW+MRROW) * MB
            DO 210 J = 1, MB
               IF( IK .GT. IRNUM ) GO TO 230
               JK = 1
               DO 190 IC = NOFF+1, NEND
                  IOFFC = ((IC-1)*NPCOL+MRCOL) * NB
                  DO 180 I = 1, NB
                     IF( JK .GT. ICNUM ) GO TO 200
                     A(IK,JK) = ONE - TWO*PSRAND(0)
                     JK = JK + 1
  180             CONTINUE
                  CALL JUMPIT( IA2, IC2, IB1, IRAN2 )
                  IB1(1) = IRAN2(1)
                  IB1(2) = IRAN2(2)
  190          CONTINUE
*
  200          CONTINUE
               IK = IK + 1
               CALL JUMPIT( IA3, IC3, IB2, IRAN3 )
               IB1(1) = IRAN3(1)
               IB1(2) = IRAN3(2)
               IB2(1) = IRAN3(1)
               IB2(2) = IRAN3(2)
  210       CONTINUE
*
            CALL JUMPIT( IA4, IC4, IB3, IRAN4 )
            IB1(1) = IRAN4(1)
            IB1(2) = IRAN4(2)
            IB2(1) = IRAN4(1)
            IB2(2) = IRAN4(2)
            IB3(1) = IRAN4(1)
            IB3(2) = IRAN4(2)
  220    CONTINUE
  230    CONTINUE
*
*     A random matrix is generated.
*
      ELSE
*
         JUMP1 = 1
         JUMP2 = NPMB
         JUMP3 = M
         JUMP4 = NQNB
         JUMP5 = NB
         JUMP6 = MRCOL
         JUMP7 = MB*MRROW
*
         CALL XJUMPM( JUMP1, MULT, IADD, JSEED, IRAN1, IA1,   IC1 )
         CALL XJUMPM( JUMP2, MULT, IADD, IRAN1, ITMP1, IA2,   IC2 )
         CALL XJUMPM( JUMP3, MULT, IADD, IRAN1, ITMP1, IA3,   IC3 )
         CALL XJUMPM( JUMP4, IA3,  IC3,  IRAN1, ITMP1, IA4,   IC4 )
         CALL XJUMPM( JUMP5, IA3,  IC3,  IRAN1, ITMP1, IA5,   IC5 )
         CALL XJUMPM( JUMP6, IA5,  IC5,  IRAN1, ITMP3, ITMP1, ITMP2 )
         CALL XJUMPM( JUMP7, MULT, IADD, ITMP3, IRAN1, ITMP1, ITMP2 )
         CALL XJUMPM( NOFF,  IA4,  IC4,  IRAN1, ITMP1, ITMP2, ITMP3 )
         CALL XJUMPM( MOFF,  IA2,  IC2,  ITMP1, IRAN1, ITMP2, ITMP3 )
         CALL SETRAN( IRAN1, IA1,  IC1 )
*
         DO 240 I = 1, 2
            IB1(I) = IRAN1(I)
            IB2(I) = IRAN1(I)
            IB3(I) = IRAN1(I)
  240    CONTINUE
*
         JK = 1
         DO 290 IC = NOFF+1, NEND
            IOFFC = ((IC-1)*NPCOL+MRCOL) * NB
            DO 280 I = 1, NB
               IF( JK .GT. ICNUM ) GO TO 300
               IK = 1
               DO 260 IR = MOFF+1, MEND
                  IOFFR = ((IR-1)*NPROW+MRROW) * MB
                  DO 250 J = 1, MB
                     IF( IK .GT. IRNUM ) GO TO 270
                     A(IK,JK) = ONE - TWO*PSRAND(0)
                     IK = IK + 1
  250             CONTINUE
                  CALL JUMPIT( IA2, IC2, IB1, IRAN2 )
                  IB1(1) = IRAN2(1)
                  IB1(2) = IRAN2(2)
  260          CONTINUE
*
  270          CONTINUE
               JK = JK + 1
               CALL JUMPIT( IA3, IC3, IB2, IRAN3 )
               IB1(1) = IRAN3(1)
               IB1(2) = IRAN3(2)
               IB2(1) = IRAN3(1)
               IB2(2) = IRAN3(2)
  280       CONTINUE
*
            CALL JUMPIT( IA4, IC4, IB3, IRAN4 )
            IB1(1) = IRAN4(1)
            IB1(2) = IRAN4(2)
            IB2(1) = IRAN4(1)
            IB2(2) = IRAN4(2)
            IB3(1) = IRAN4(1)
            IB3(2) = IRAN4(2)
  290    CONTINUE
  300    CONTINUE
      END IF
*
*     Diagonally dominant matrix will be generated.
*
      IF( LSAME( DIAG, 'D' ) ) THEN
         IF( MB.NE.NB ) THEN
            WRITE(*,*) 'Diagonally dominant matrices with rowNB not'//
     $                 ' equal colNB is not supported!'
            RETURN
         END IF
*
         MAXMN = MAX(M, N)
         JK    = 1
         DO 340 IC = NOFF+1, NEND
            IOFFC = ((IC-1)*NPCOL+MRCOL) * NB
            IK    = 1
            DO 320 IR = MOFF+1, MEND
               IOFFR = ((IR-1)*NPROW+MRROW) * MB
               IF( IOFFC.EQ.IOFFR ) THEN
                  DO 310 J = 0, MB-1
                     IF( IK .GT. IRNUM ) GO TO 330
                     A(IK,JK+J) = ABS(A(IK,JK+J)) + MAXMN
                     IK = IK + 1
  310             CONTINUE
               ELSE
                  IK = IK + MB
               END IF
  320       CONTINUE
  330       CONTINUE
            JK = JK + NB
  340    CONTINUE
      END IF
*
      RETURN
*
*     End of PSMATGEN
*
      END