1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
SUBROUTINE PSPOTRRV( UPLO, N, A, IA, JA, DESCA, WORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 28, 2001
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER IA, JA, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSPOTRRV recomputes sub( A ) = A(IA:IA+N-1,JA:JA+N-1) from L or U
* computed by PSPOTRF. The routine performs the Cholesky factorization
* in reverse.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* symmetric distributed matrix sub( A ) is stored:
* stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, the local pieces of the factors L or U of the
* distributed matrix sub( A ) from the Cholesky factorization.
* On exit, the original distributed matrix sub( A ) is
* restored.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WORK (local workspace) REAL array, dimension (LWORK)
* LWORK >= MB_A*NB_A.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER COLBTOP, ROWBTOP
INTEGER IACOL, IAROW, ICTXT, IL, J, JB, JL, JN, MYCOL,
$ MYROW, NPCOL, NPROW
* .. Local Arrays ..
INTEGER DESCW( DLEN_ )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCSET, PSLACPY, PSLASET,
$ PSSYRK, PSTRMM, PB_TOPGET, PB_TOPSET
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, INDXG2P
EXTERNAL ICEIL, INDXG2P, LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
UPPER = LSAME( UPLO, 'U' )
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JL = MAX( ( ( JA+N-2 ) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1, JA )
IL = MAX( ( ( IA+N-2 ) / DESCA( MB_ ) ) * DESCA( MB_ ) + 1, IA )
IAROW = INDXG2P( IL, DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW )
IACOL = INDXG2P( JL, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ), NPCOL )
*
* Define array descriptor for working array WORK
*
CALL DESCSET( DESCW, DESCA( MB_ ), DESCA( NB_ ), DESCA( MB_ ),
$ DESCA( NB_ ), IAROW, IACOL, ICTXT, DESCA( MB_ ) )
*
IF ( UPPER ) THEN
*
* Compute A from the Cholesky factor U : A = U'*U.
*
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ' ' )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'S-ring' )
*
DO 10 J = JL, JN+1, -DESCA( NB_ )
*
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
* Update the trailing matrix, A = A + U'*U
*
CALL PSSYRK( 'Upper', 'Transpose', JA+N-J-JB, JB, ONE, A, IL,
$ J+JB, DESCA, ONE, A, IL+JB, J+JB, DESCA )
*
* Copy current diagonal block of A into workspace
*
CALL PSLACPY( 'All', JB, JB, A, IL, J, DESCA, WORK, 1, 1,
$ DESCW )
*
* Zero strict lower triangular part of diagonal block, to make
* it U1.
*
CALL PSLASET( 'Lower', JB-1, JB, ZERO, ZERO, A, IL+1, J,
$ DESCA )
*
* Update the row panel U with the triangular matrix
*
CALL PSTRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit', JB,
$ N-J+JA, ONE, WORK, 1, 1, DESCW, A, IL, J,
$ DESCA )
*
* Restore the strict lower triangular part of diagonal block.
*
CALL PSLACPY( 'Lower', JB-1, JB, WORK, 2, 1, DESCW, A,
$ IL+1, J, DESCA )
*
IL = IL - DESCA( MB_ )
DESCW( RSRC_ ) = MOD( DESCW( RSRC_ ) + NPROW - 1, NPROW )
DESCW( CSRC_ ) = MOD( DESCW( CSRC_ ) + NPCOL - 1, NPCOL )
*
10 CONTINUE
*
* Handle first block separately
*
JB = MIN( JN-JA+1, DESCA( NB_ ) )
*
* Update the trailing matrix, A = A + U'*U
*
CALL PSSYRK( 'Upper', 'Transpose', N-JB, JB, ONE, A, IA, JA+JB,
$ DESCA, ONE, A, IA+JB, JA+JB, DESCA )
*
* Copy current diagonal block of A into workspace
*
CALL PSLACPY( 'All', JB, JB, A, IA, JA, DESCA, WORK, 1, 1,
$ DESCW )
*
* Zero strict lower triangular part of diagonal block, to make
* it U1.
*
CALL PSLASET( 'Lower', JB-1, JB, ZERO, ZERO, A, IA+1, JA,
$ DESCA )
*
* Update the row panel U with the triangular matrix
*
CALL PSTRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit', JB,
$ N, ONE, WORK, 1, 1, DESCW, A, IA, JA, DESCA )
*
* Restore the strict lower triangular part of diagonal block.
*
CALL PSLACPY( 'Lower', JB-1, JB, WORK, 2, 1, DESCW, A, IA+1,
$ JA, DESCA )
*
ELSE
*
* Compute A from the Cholesky factor L : A = L*L'.
*
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
*
DO 20 J = JL, JN+1, -DESCA( NB_ )
*
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
* Update the trailing matrix, A = A + L*L'
*
CALL PSSYRK( 'Lower', 'No transpose', IA+N-IL-JB, JB, ONE, A,
$ IL+JB, J, DESCA, ONE, A, IL+JB, J+JB, DESCA )
*
* Copy current diagonal block of A into workspace
*
CALL PSLACPY( 'All', JB, JB, A, IL, J, DESCA, WORK, 1, 1,
$ DESCW )
*
* Zero strict upper triangular part of diagonal block, to make
* it L1.
*
CALL PSLASET( 'Upper', JB, JB-1, ZERO, ZERO, A, IL, J+1,
$ DESCA )
*
* Update the column panel L with the triangular matrix
*
CALL PSTRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
$ IA+N-IL, JB, ONE, WORK, 1, 1, DESCW, A, IL,
$ J, DESCA )
*
* Restore the strict upper triangular part of diagonal block.
*
CALL PSLACPY( 'Upper', JB, JB-1, WORK, 1, 2, DESCW, A,
$ IL, J+1, DESCA )
*
IL = IL - DESCA( MB_ )
DESCW( RSRC_ ) = MOD( DESCW( RSRC_ ) + NPROW - 1, NPROW )
DESCW( CSRC_ ) = MOD( DESCW( CSRC_ ) + NPCOL - 1, NPCOL )
*
20 CONTINUE
*
* Handle first block separately
*
JB = MIN( JN-JA+1, DESCA( NB_ ) )
*
* Update the trailing matrix, A = A + L*L'
*
CALL PSSYRK( 'Lower', 'No transpose', N-JB, JB, ONE, A,
$ IA+JB, JA, DESCA, ONE, A, IA+JB, JA+JB, DESCA )
*
* Copy current diagonal block of A into workspace
*
CALL PSLACPY( 'All', JB, JB, A, IA, JA, DESCA, WORK, 1, 1,
$ DESCW )
*
* Zero strict upper triangular part of diagonal block, to make
* it L1.
*
CALL PSLASET( 'Upper', JB, JB-1, ZERO, ZERO, A, IA, JA+1,
$ DESCA )
*
* Update the column panel L with the triangular matrix
*
CALL PSTRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit', N, JB,
$ ONE, WORK, 1, 1, DESCW, A, IA, JA, DESCA )
*
* Restore the strict upper triangular part of diagonal block.
*
CALL PSLACPY( 'Upper', JB, JB-1, WORK, 1, 2, DESCW, A, IA,
$ JA+1, DESCA )
*
END IF
*
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
RETURN
*
* End of PSPOTRRV
*
END
|