1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
SUBROUTINE PZBMATGEN( ICTXT, AFORM, AFORM2, BWL, BWU, N,
$ MB, NB, A,
$ LDA, IAROW, IACOL, ISEED,
$ MYROW, MYCOL, NPROW, NPCOL )
*
*
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
* .. Scalar Arguments ..
CHARACTER*1 AFORM, AFORM2
INTEGER IACOL, IAROW, ICTXT,
$ ISEED, LDA, MB, MYCOL, MYROW, N,
$ NB, NPCOL, NPROW, BWL, BWU
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* Purpose
* =======
*
* PZBMATGEN : Parallel Complex Double precision Band MATrix GENerator.
* (Re)Generate a distributed Band matrix A (or sub-matrix of A).
*
* Arguments
* =========
*
* ICTXT (global input) INTEGER
* The BLACS context handle, indicating the global context of
* the operation. The context itself is global.
*
* AFORM (global input) CHARACTER*1
* if AFORM = 'L' : A is returned as a hermitian lower
* triangular matrix, and is diagonally dominant.
* if AFORM = 'U' : A is returned as a hermitian upper
* triangular matrix, and is diagonally dominant.
* if AFORM = 'G' : A is returned as a general matrix.
* if AFORM = 'T' : A is returned as a general matrix in
* tridiagonal-compatible form.
*
* AFORM2 (global input) CHARACTER*1
* if the matrix is general:
* if AFORM2 = 'D' : A is returned diagonally dominant.
* if AFORM2 != 'D' : A is not returned diagonally dominant.
* if the matrix is symmetric or hermitian:
* if AFORM2 = 'T' : A is returned in tridiagonally-compatible
* form (a transpose form).
* if AFORM2 != 'T' : A is returned in banded-compatible form.
*
* M (global input) INTEGER
* The number of nonzero rows in the generated distributed
* band matrix.
*
* N (global input) INTEGER
* The number of columns in the generated distributed
* matrix.
*
* MB (global input) INTEGER
* The row blocking factor of the distributed matrix A.
*
* NB (global input) INTEGER
* The column blocking factor of the distributed matrix A.
*
* A (local output) COMPLEX*16, pointer into the local memory
* to an array of dimension ( LDA, * ) containing the local
* pieces of the distributed matrix.
*
* LDA (local input) INTEGER
* The leading dimension of the array containing the local
* pieces of the distributed matrix A.
*
* IAROW (global input) INTEGER
* The row processor coordinate which holds the first block
* of the distributed matrix A.
* A( DIAG_INDEX, I ) = A( DIAG_INDEX, I ) + BWL+BWU
*
* IACOL (global input) INTEGER
* The column processor coordinate which holds the first
* block of the distributed matrix A.
*
* ISEED (global input) INTEGER
* The seed number to generate the distributed matrix A.
*
* MYROW (local input) INTEGER
* The row process coordinate of the calling process.
*
* MYCOL (local input) INTEGER
* The column process coordinate of the calling process.
*
* NPROW (global input) INTEGER
* The number of process rows in the grid.
*
* NPCOL (global input) INTEGER
* The number of process columns in the grid.
*
* Notes
* =====
*
* This code is a simple wrapper around PZMATGEN, for band matrices.
*
* =====================================================================
*
* Code Developer: Andrew J. Cleary, University of Tennessee.
* Current address: Lawrence Livermore National Labs.
* This version released: August, 2001.
*
* =====================================================================
*
* ..
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0 )
PARAMETER ( ZERO = 0.0D+0 )
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER DIAG_INDEX, I, J, M_MATGEN, NQ, N_MATGEN,
$ START_INDEX
* ..
* .. External Subroutines ..
EXTERNAL PZMATGEN
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, NUMROC
EXTERNAL ICEIL, NUMROC, LSAME
* ..
* .. Executable Statements ..
*
*
IF( LSAME( AFORM, 'L' ).OR.LSAME( AFORM, 'U' ) ) THEN
M_MATGEN = BWL + 1
N_MATGEN = N
START_INDEX = 1
IF( LSAME( AFORM, 'L' ) ) THEN
DIAG_INDEX = 1
ELSE
DIAG_INDEX = BWL + 1
ENDIF
ELSE
M_MATGEN = BWL + BWU + 1
N_MATGEN = N
DIAG_INDEX = BWU + 1
START_INDEX = 1
ENDIF
*
NQ = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
*
*
* Generate a random matrix initially
*
IF( LSAME( AFORM, 'T' ) .OR.
$ ( LSAME( AFORM2, 'T' ) ) ) THEN
*
CALL PZMATGEN( ICTXT, 'T', 'N',
$ N_MATGEN, M_MATGEN,
$ NB, M_MATGEN, A( START_INDEX, 1 ),
$ LDA, IAROW, IACOL,
$ ISEED, 0, NQ, 0, M_MATGEN,
$ MYCOL, MYROW, NPCOL, NPROW )
*
ELSE
*
CALL PZMATGEN( ICTXT, 'N', 'N',
$ M_MATGEN, N_MATGEN,
$ M_MATGEN, NB, A( START_INDEX, 1 ),
$ LDA, IAROW, IACOL,
$ ISEED, 0, M_MATGEN, 0, NQ,
$ MYROW, MYCOL, NPROW, NPCOL )
*
* Zero out padding at tops of columns
*
DO 1000 J=1,NB
*
DO 2000 I=1, LDA-M_MATGEN
*
* Indexing goes negative; BMATGEN assumes that space
* has been preallocated above the first column as it
* has to be if the matrix is to be input to
* Scalapack's band solvers.
*
A( I-LDA+M_MATGEN, J ) = CZERO
*
2000 CONTINUE
*
1000 CONTINUE
*
ENDIF
*
IF( LSAME( AFORM2, 'D' ).OR.
$ ( LSAME( AFORM, 'L' ).OR.LSAME( AFORM, 'U' ) ) ) THEN
*
* Loop over diagonal elements stored on this processor.
*
*
DO 330 I=1, NQ
IF( LSAME( AFORM, 'T' ) .OR.
$ ( LSAME( AFORM2, 'T' ) ) ) THEN
IF( NPROW .EQ. 1 ) THEN
A( I, DIAG_INDEX ) = DCMPLX( DBLE( A( I, DIAG_INDEX ) )
$ + DBLE( 2*( BWL+BWU+1 ) ) )
ENDIF
ELSE
IF( NPROW .EQ. 1 ) THEN
A( DIAG_INDEX, I ) = DCMPLX( DBLE( A( DIAG_INDEX, I ) )
$ + DBLE( 2*( BWL+BWU+1 ) ) )
ENDIF
END IF
330 CONTINUE
*
*
ELSE
*
* Must add elements to keep condition of matrix in check
*
DO 380 I=1, NQ
*
IF( NPROW .EQ. 1 ) THEN
*
IF( MOD(I+MYCOL*NB,2) .EQ. 1 ) THEN
A( DIAG_INDEX+1, I ) =
$ DCMPLX( DBLE( A( DIAG_INDEX+1, I ) )
$ + DBLE( 2*( BWL+BWU+1 ) ) )
*
ELSE
*
A( DIAG_INDEX-1, I ) =
$ DCMPLX( DBLE( A( DIAG_INDEX-1, I ) )
$ + DBLE( 2*( BWL+BWU+1 ) ) )
ENDIF
*
ENDIF
*
380 CONTINUE
*
END IF
*
RETURN
*
* End of PZBMATGEN
*
END
|