1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
PROGRAM PZDTDRIVER
*
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* Purpose
* =======
*
* PZDTDRIVER is a test program for the
* ScaLAPACK Band Cholesky routines corresponding to the options
* indicated by ZDT. This test driver performs an
* A = L*U factorization
* and solves a linear system with the factors for 1 or more RHS.
*
* The program must be driven by a short data file.
* Here's an example file:
*'ScaLAPACK, Version 1.2, banded linear systems input file'
*'PVM.'
*'' output file name (if any)
*6 device out
*'L' define Lower or Upper
*9 number of problem sizes
*1 5 17 28 37 121 200 1023 2048 3073 values of N
*6 number of bandwidths
*1 2 4 10 31 64 values of BW
*1 number of NB's
*-1 3 4 5 values of NB (-1 for automatic choice)
*1 number of NRHS's (must be 1)
*8 values of NRHS
*1 number of NBRHS's (ignored)
*1 values of NBRHS (ignored)
*6 number of process grids
*1 2 3 4 5 7 8 15 26 47 64 values of "Number of Process Columns"
*3.0 threshold
*
* Internal Parameters
* ===================
*
* TOTMEM INTEGER, default = 6200000.
* TOTMEM is a machine-specific parameter indicating the
* maximum amount of available memory in bytes.
* The user should customize TOTMEM to his platform. Remember
* to leave room in memory for the operating system, the BLACS
* buffer, etc. For example, on a system with 8 MB of memory
* per process (e.g., one processor on an Intel iPSC/860), the
* parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
* code, BLACS buffer, etc). However, for PVM, we usually set
* TOTMEM = 2000000. Some experimenting with the maximum value
* of TOTMEM may be required.
*
* INTGSZ INTEGER, default = 4 bytes.
* ZPLXSZ INTEGER, default = 16 bytes.
* INTGSZ and ZPLXSZ indicate the length in bytes on the
* given platform for an integer and a double precision
* complex.
* MEM COMPLEX*16 array, dimension ( TOTMEM/ZPLXSZ )
* All arrays used by ScaLAPACK routines are allocated from
* this array and referenced by pointers. The integer IPB,
* for example, is a pointer to the starting element of MEM for
* the solution vector(s) B.
*
* =====================================================================
*
* Code Developer: Andrew J. Cleary, University of Tennessee.
* Current address: Lawrence Livermore National Labs.
* This version released: August, 2001.
*
* =====================================================================
*
* .. Parameters ..
INTEGER TOTMEM
PARAMETER ( TOTMEM = 3000000 )
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*
DOUBLE PRECISION ZERO
INTEGER MEMSIZ, NTESTS, ZPLXSZ
COMPLEX*16 PADVAL
PARAMETER ( ZPLXSZ = 16,
$ MEMSIZ = TOTMEM / ZPLXSZ, NTESTS = 20,
$ PADVAL = ( -9923.0D+0, -9923.0D+0 ),
$ ZERO = 0.0D+0 )
INTEGER INT_ONE
PARAMETER ( INT_ONE = 1 )
* ..
* .. Local Scalars ..
LOGICAL CHECK
CHARACTER TRANS
CHARACTER*6 PASSED
CHARACTER*80 OUTFILE
INTEGER BWL, BWU, BW_NUM, FILLIN_SIZE, FREE_PTR, H, HH,
$ I, IAM, IASEED, IBSEED, ICTXT, ICTXTB,
$ IERR_TEMP, IMIDPAD, INFO, IPA, IPB, IPOSTPAD,
$ IPREPAD, IPW, IPW_SIZE, IPW_SOLVE,
$ IPW_SOLVE_SIZE, IP_DRIVER_W, IP_FILLIN, J, K,
$ KFAIL, KPASS, KSKIP, KTESTS, MYCOL, MYRHS_SIZE,
$ MYROW, N, NB, NBW, NGRIDS, NMAT, NNB, NNBR,
$ NNR, NOUT, NP, NPCOL, NPROCS, NPROCS_REAL,
$ NPROW, NQ, NRHS, N_FIRST, N_LAST, WORKSIZ
REAL THRESH
DOUBLE PRECISION ANORM, NOPS, NOPS2, SRESID, TMFLOPS,
$ TMFLOPS2
* ..
* .. Local Arrays ..
INTEGER BWLVAL( NTESTS ), BWUVAL( NTESTS ), DESCA( 7 ),
$ DESCA2D( DLEN_ ), DESCB( 7 ), DESCB2D( DLEN_ ),
$ IERR( 1 ), NBRVAL( NTESTS ), NBVAL( NTESTS ),
$ NRVAL( NTESTS ), NVAL( NTESTS ),
$ PVAL( NTESTS ), QVAL( NTESTS )
DOUBLE PRECISION CTIME( 2 ), WTIME( 2 )
COMPLEX*16 MEM( MEMSIZ )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
$ BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
$ BLACS_PINFO, DESCINIT, IGSUM2D, PZBMATGEN,
$ PZCHEKPAD, PZDTINFO, PZDTLASCHK, PZDTTRF,
$ PZDTTRS, PZFILLPAD, PZMATGEN, SLBOOT,
$ SLCOMBINE, SLTIMER
* ..
* .. External Functions ..
INTEGER NUMROC
LOGICAL LSAME
DOUBLE PRECISION PZLANGE
EXTERNAL LSAME, NUMROC, PZLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, MOD
* ..
* .. Data Statements ..
DATA KFAIL, KPASS, KSKIP, KTESTS / 4*0 /
* ..
*
*
*
* .. Executable Statements ..
*
* Get starting information
*
CALL BLACS_PINFO( IAM, NPROCS )
IASEED = 100
IBSEED = 200
*
CALL PZDTINFO( OUTFILE, NOUT, TRANS, NMAT, NVAL, NTESTS, NBW,
$ BWLVAL, BWUVAL, NTESTS, NNB, NBVAL, NTESTS, NNR,
$ NRVAL, NTESTS, NNBR, NBRVAL, NTESTS, NGRIDS, PVAL,
$ NTESTS, QVAL, NTESTS, THRESH, MEM, IAM, NPROCS )
*
CHECK = ( THRESH.GE.0.0D+0 )
*
* Print headings
*
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )
WRITE( NOUT, FMT = * )
END IF
*
* Loop over different process grids
*
DO 60 I = 1, NGRIDS
*
NPROW = PVAL( I )
NPCOL = QVAL( I )
*
* Make sure grid information is correct
*
IERR( 1 ) = 0
IF( NPROW.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'GRID', 'nprow', NPROW
IERR( 1 ) = 1
ELSE IF( NPCOL.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'GRID', 'npcol', NPCOL
IERR( 1 ) = 1
ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
IERR( 1 ) = 1
END IF
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'grid'
KSKIP = KSKIP + 1
GO TO 50
END IF
*
* Define process grid
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
*
*
* Define transpose process grid
*
CALL BLACS_GET( -1, 0, ICTXTB )
CALL BLACS_GRIDINIT( ICTXTB, 'Column-major', NPCOL, NPROW )
*
* Go to bottom of process grid loop if this case doesn't use my
* process
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IF( MYROW.LT.0 .OR. MYCOL.LT.0 ) THEN
GO TO 50
ENDIF
*
DO 40 J = 1, NMAT
*
IERR( 1 ) = 0
*
N = NVAL( J )
*
* Make sure matrix information is correct
*
IF( N.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'MATRIX', 'N', N
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
$ -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'size'
KSKIP = KSKIP + 1
GO TO 40
END IF
*
*
DO 45 BW_NUM = 1, NBW
*
IERR( 1 ) = 0
*
BWL = 1
IF( BWL.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'Lower Band', 'bwl', BWL
IERR( 1 ) = 1
END IF
*
BWU = 1
IF( BWU.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'Upper Band', 'bwu', BWU
IERR( 1 ) = 1
END IF
*
IF( BWL.GT.N-1 ) THEN
IF( IAM.EQ.0 ) THEN
IERR( 1 ) = 1
ENDIF
END IF
*
IF( BWU.GT.N-1 ) THEN
IF( IAM.EQ.0 ) THEN
IERR( 1 ) = 1
ENDIF
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
$ -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
KSKIP = KSKIP + 1
GO TO 45
END IF
*
DO 30 K = 1, NNB
*
IERR( 1 ) = 0
*
NB = NBVAL( K )
IF( NB.LT.0 ) THEN
NB =( (N-(NPCOL-1)*INT_ONE-1)/NPCOL + 1 )
$ + INT_ONE
NB = MAX( NB, 2*INT_ONE )
NB = MIN( N, NB )
END IF
*
* Make sure NB is legal
*
IERR( 1 ) = 0
IF( NB.LT.MIN( 2*INT_ONE, N ) ) THEN
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
$ -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
KSKIP = KSKIP + 1
GO TO 30
END IF
*
* Padding constants
*
NP = NUMROC( (3), (3),
$ MYROW, 0, NPROW )
NQ = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
IF( CHECK ) THEN
IPREPAD = ((3)+10)
IMIDPAD = 10
IPOSTPAD = ((3)+10)
ELSE
IPREPAD = 0
IMIDPAD = 0
IPOSTPAD = 0
END IF
*
* Initialize the array descriptor for the matrix A
*
CALL DESCINIT( DESCA2D, N, (3),
$ NB, 1, 0, 0,
$ ICTXTB, NB+10, IERR( 1 ) )
*
* Convert this to 1D descriptor
*
DESCA( 1 ) = 501
DESCA( 3 ) = N
DESCA( 4 ) = NB
DESCA( 5 ) = 0
DESCA( 2 ) = ICTXT
DESCA( 6 ) = ((3)+10)
DESCA( 7 ) = 0
*
IERR_TEMP = IERR( 1 )
IERR( 1 ) = 0
IERR( 1 ) = MIN( IERR( 1 ), IERR_TEMP )
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
IF( IERR( 1 ).LT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'descriptor'
KSKIP = KSKIP + 1
GO TO 30
END IF
*
* Assign pointers into MEM for SCALAPACK arrays, A is
* allocated starting at position MEM( IPREPAD+1 )
*
FREE_PTR = 1
IPB = 0
*
* Save room for prepadding
FREE_PTR = FREE_PTR + IPREPAD
*
IPA = FREE_PTR
FREE_PTR = FREE_PTR + (NB+10)*(3)
$ + IPOSTPAD
*
* Add memory for fillin
* Fillin space needs to store:
* Fillin spike:
* Contribution to previous proc's diagonal block of
* reduced system:
* Off-diagonal block of reduced system:
* Diagonal block of reduced system:
*
FILLIN_SIZE =
$ (12*NPCOL+3*NB)
*
* Claim memory for fillin
*
FREE_PTR = FREE_PTR + IPREPAD
IP_FILLIN = FREE_PTR
FREE_PTR = FREE_PTR + FILLIN_SIZE
*
* Workspace needed by computational routines:
*
IPW_SIZE = 0
*
* factorization:
*
IPW_SIZE = 8*NPCOL
*
* Claim memory for IPW
*
IPW = FREE_PTR
FREE_PTR = FREE_PTR + IPW_SIZE
*
* Check for adequate memory for problem size
*
IERR( 1 ) = 0
IF( FREE_PTR.GT.MEMSIZ ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9996 )
$ 'divide and conquer factorization',
$ (FREE_PTR )*ZPLXSZ
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR,
$ 1, -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'MEMORY'
KSKIP = KSKIP + 1
GO TO 30
END IF
*
* Worksize needed for LAPRNT
WORKSIZ = MAX( ((3)+10), NB )
*
IF( CHECK ) THEN
*
* Calculate the amount of workspace required by
* the checking routines.
*
* PZLANGE
WORKSIZ = MAX( WORKSIZ, DESCA2D( NB_ ) )
*
* PZDTLASCHK
WORKSIZ = MAX( WORKSIZ,
$ MAX(5,NB)+2*NB )
END IF
*
FREE_PTR = FREE_PTR + IPREPAD
IP_DRIVER_W = FREE_PTR
FREE_PTR = FREE_PTR + WORKSIZ + IPOSTPAD
*
*
* Check for adequate memory for problem size
*
IERR( 1 ) = 0
IF( FREE_PTR.GT.MEMSIZ ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9996 ) 'factorization',
$ ( FREE_PTR )*ZPLXSZ
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR,
$ 1, -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'MEMORY'
KSKIP = KSKIP + 1
GO TO 30
END IF
*
CALL PZBMATGEN( ICTXT, 'T', 'D', BWL, BWU, N, (3), NB,
$ MEM( IPA ), NB+10, 0, 0, IASEED, MYROW,
$ MYCOL, NPROW, NPCOL )
CALL PZFILLPAD( ICTXT, NQ, NP, MEM( IPA-IPREPAD ),
$ NB+10, IPREPAD, IPOSTPAD,
$ PADVAL )
*
CALL PZFILLPAD( ICTXT, WORKSIZ, 1,
$ MEM( IP_DRIVER_W-IPREPAD ), WORKSIZ,
$ IPREPAD, IPOSTPAD, PADVAL )
*
* Calculate norm of A for residual error-checking
*
IF( CHECK ) THEN
*
ANORM = PZLANGE( 'I', N,
$ (3), MEM( IPA ), 1, 1,
$ DESCA2D, MEM( IP_DRIVER_W ) )
CALL PZCHEKPAD( ICTXT, 'PZLANGE', NQ, NP,
$ MEM( IPA-IPREPAD ), NB+10,
$ IPREPAD, IPOSTPAD, PADVAL )
CALL PZCHEKPAD( ICTXT, 'PZLANGE',
$ WORKSIZ, 1,
$ MEM( IP_DRIVER_W-IPREPAD ), WORKSIZ,
$ IPREPAD, IPOSTPAD, PADVAL )
END IF
*
*
CALL SLBOOT()
CALL BLACS_BARRIER( ICTXT, 'All' )
*
* Perform factorization
*
CALL SLTIMER( 1 )
*
CALL PZDTTRF( N, MEM( IPA+2*( NB+10 ) ),
$ MEM( IPA+1*( NB+10 ) ), MEM( IPA ), 1,
$ DESCA, MEM( IP_FILLIN ), FILLIN_SIZE,
$ MEM( IPW ), IPW_SIZE, INFO )
*
CALL SLTIMER( 1 )
*
IF( INFO.NE.0 ) THEN
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = * ) 'PZDTTRF INFO=', INFO
ENDIF
KFAIL = KFAIL + 1
GO TO 30
END IF
*
IF( CHECK ) THEN
*
* Check for memory overwrite in factorization
*
CALL PZCHEKPAD( ICTXT, 'PZDTTRF', NQ,
$ NP, MEM( IPA-IPREPAD ), NB+10,
$ IPREPAD, IPOSTPAD, PADVAL )
END IF
*
*
* Loop over the different values for NRHS
*
DO 20 HH = 1, NNR
*
IERR( 1 ) = 0
*
NRHS = NRVAL( HH )
*
* Initialize Array Descriptor for rhs
*
CALL DESCINIT( DESCB2D, N, NRHS, NB, 1, 0, 0,
$ ICTXTB, NB+10, IERR( 1 ) )
*
* Convert this to 1D descriptor
*
DESCB( 1 ) = 502
DESCB( 3 ) = N
DESCB( 4 ) = NB
DESCB( 5 ) = 0
DESCB( 2 ) = ICTXT
DESCB( 6 ) = DESCB2D( LLD_ )
DESCB( 7 ) = 0
*
* reset free_ptr to reuse space for right hand sides
*
IF( IPB .GT. 0 ) THEN
FREE_PTR = IPB
ENDIF
*
FREE_PTR = FREE_PTR + IPREPAD
IPB = FREE_PTR
FREE_PTR = FREE_PTR + NRHS*DESCB2D( LLD_ )
$ + IPOSTPAD
*
* Allocate workspace for workspace in TRS routine:
*
IPW_SOLVE_SIZE = 10*NPCOL+4*NRHS
*
IPW_SOLVE = FREE_PTR
FREE_PTR = FREE_PTR + IPW_SOLVE_SIZE
*
IERR( 1 ) = 0
IF( FREE_PTR.GT.MEMSIZ ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9996 )'solve',
$ ( FREE_PTR )*ZPLXSZ
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1,
$ IERR, 1, -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'MEMORY'
KSKIP = KSKIP + 1
GO TO 15
END IF
*
MYRHS_SIZE = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
* Generate RHS
*
CALL PZMATGEN(ICTXTB, 'No', 'No',
$ DESCB2D( M_ ), DESCB2D( N_ ),
$ DESCB2D( MB_ ), DESCB2D( NB_ ),
$ MEM( IPB ),
$ DESCB2D( LLD_ ), DESCB2D( RSRC_ ),
$ DESCB2D( CSRC_ ),
$ IBSEED, 0, MYRHS_SIZE, 0, NRHS, MYCOL,
$ MYROW, NPCOL, NPROW )
*
IF( CHECK ) THEN
CALL PZFILLPAD( ICTXTB, NB, NRHS,
$ MEM( IPB-IPREPAD ),
$ DESCB2D( LLD_ ),
$ IPREPAD, IPOSTPAD,
$ PADVAL )
CALL PZFILLPAD( ICTXT, WORKSIZ, 1,
$ MEM( IP_DRIVER_W-IPREPAD ),
$ WORKSIZ, IPREPAD,
$ IPOSTPAD, PADVAL )
END IF
*
*
CALL BLACS_BARRIER( ICTXT, 'All')
CALL SLTIMER( 2 )
*
* Solve linear system via factorization
*
CALL PZDTTRS( TRANS, N, NRHS,
$ MEM( IPA+2*( NB+10 ) ),
$ MEM( IPA+1*( NB+10 ) ), MEM( IPA ),
$ 1, DESCA, MEM( IPB ), 1, DESCB,
$ MEM( IP_FILLIN ), FILLIN_SIZE,
$ MEM( IPW_SOLVE ), IPW_SOLVE_SIZE,
$ INFO )
*
CALL SLTIMER( 2 )
*
IF( INFO.NE.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = * ) 'PZDTTRS INFO=', INFO
KFAIL = KFAIL + 1
PASSED = 'FAILED'
GO TO 20
END IF
*
IF( CHECK ) THEN
*
* check for memory overwrite
*
CALL PZCHEKPAD( ICTXT, 'PZDTTRS-work',
$ WORKSIZ, 1,
$ MEM( IP_DRIVER_W-IPREPAD ),
$ WORKSIZ, IPREPAD,
$ IPOSTPAD, PADVAL )
*
* check the solution to rhs
*
SRESID = ZERO
*
* Reset descriptor describing A to 1-by-P grid for
* use in banded utility routines
*
CALL DESCINIT( DESCA2D, (3), N,
$ (3), NB, 0, 0,
$ ICTXT, (3), IERR( 1 ) )
CALL PZDTLASCHK( 'N', 'D', TRANS,
$ N, BWL, BWU, NRHS,
$ MEM( IPB ), 1, 1, DESCB2D,
$ IASEED, MEM( IPA ), 1, 1, DESCA2D,
$ IBSEED, ANORM, SRESID,
$ MEM( IP_DRIVER_W ), WORKSIZ )
*
IF( IAM.EQ.0 ) THEN
IF( SRESID.GT.THRESH )
$ WRITE( NOUT, FMT = 9985 ) SRESID
END IF
*
* The second test is a NaN trap
*
IF( ( SRESID.LE.THRESH ).AND.
$ ( (SRESID-SRESID).EQ.0.0D+0 ) ) THEN
KPASS = KPASS + 1
PASSED = 'PASSED'
ELSE
KFAIL = KFAIL + 1
PASSED = 'FAILED'
END IF
*
END IF
*
15 CONTINUE
* Skipped tests jump to here to print out "SKIPPED"
*
* Gather maximum of all CPU and WALL clock timings
*
CALL SLCOMBINE( ICTXT, 'All', '>', 'W', 2, 1,
$ WTIME )
CALL SLCOMBINE( ICTXT, 'All', '>', 'C', 2, 1,
$ CTIME )
*
* Print results
*
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
*
NOPS = 0
NOPS2 = 0
*
N_FIRST = NB
NPROCS_REAL = ( N-1 )/NB + 1
N_LAST = MOD( N-1, NB ) + 1
*
* 2 N bwl INT_ONE + N (bwl) flops
* for LU factorization
*
NOPS = 2*(DBLE(N)*DBLE(BWL)*
$ DBLE(INT_ONE)) +
$ (DBLE(N)*DBLE(BWL))
*
* nrhs * 2 N*(bwl+INT_ONE) flops for LU solve.
*
NOPS = NOPS +
$ 2 * (DBLE(N)*(DBLE(BWL)+DBLE(INT_ONE))
$ *DBLE(NRHS))
*
* Multiply by 4 to get complex count
*
NOPS = NOPS * DBLE(4)
*
* Second calc to represent actual hardware speed
*
* 2*N_FIRST bwl*bwu Flops for LU
* factorization in proc 1
*
NOPS2 = 2*( (DBLE(N_FIRST)*
$ DBLE(BWL)*DBLE(BWU)))
*
IF ( NPROCS_REAL .GT. 1) THEN
* 8 N_LAST bwl*INT_ONE
* flops for LU and spike
* calc in last processor
*
NOPS2 = NOPS2 +
$ 8*( (DBLE(N_LAST)*DBLE(BWL)
$ *DBLE(INT_ONE)) )
ENDIF
*
IF ( NPROCS_REAL .GT. 2) THEN
* 8 NB bwl*INT_ONE flops for LU and spike
* calc in other processors
*
NOPS2 = NOPS2 + (NPROCS_REAL-2)*
$ 8*( (DBLE(NB)*DBLE(BWL)
$ *DBLE(INT_ONE)) )
ENDIF
*
* Reduced system
*
NOPS2 = NOPS2 +
$ 2*( NPROCS_REAL-1 ) *
$ ( BWL*INT_ONE*BWL/3 )
IF( NPROCS_REAL .GT. 1 ) THEN
NOPS2 = NOPS2 +
$ 2*( NPROCS_REAL-2 ) *
$ (2*BWL*INT_ONE*BWL)
ENDIF
*
* Solve stage
*
* nrhs*2 n_first*
* (bwl+INT_ONE)
* flops for L,U solve in proc 1.
*
NOPS2 = NOPS2 +
$ 2*
$ DBLE(N_FIRST)*
$ DBLE(NRHS) *
$ ( DBLE(BWL)+DBLE(INT_ONE))
*
IF ( NPROCS_REAL .GT. 1 ) THEN
*
* 2*nrhs*2 n_last
* (bwl+INT_ONE)
* flops for LU solve in other procs
*
NOPS2 = NOPS2 +
$ 4*
$ (DBLE(N_LAST)*(DBLE(BWL)+
$ DBLE(INT_ONE)))*DBLE(NRHS)
ENDIF
*
IF ( NPROCS_REAL .GT. 2 ) THEN
*
* 2*nrhs*2 NB
* (bwl+INT_ONE)
* flops for LU solve in other procs
*
NOPS2 = NOPS2 +
$ ( NPROCS_REAL-2)*2*
$ ( (DBLE(NB)*(DBLE(BWL)+
$ DBLE(INT_ONE)))*DBLE(NRHS) )
ENDIF
*
* Reduced system
*
NOPS2 = NOPS2 +
$ NRHS*( NPROCS_REAL-1)*2*(BWL*INT_ONE )
IF( NPROCS_REAL .GT. 1 ) THEN
NOPS2 = NOPS2 +
$ NRHS*( NPROCS_REAL-2 ) *
$ ( 6 * BWL*INT_ONE )
ENDIF
*
*
* Multiply by 4 to get complex count
*
NOPS2 = NOPS2 * DBLE(4)
*
* Calculate total megaflops - factorization and/or
* solve -- for WALL and CPU time, and print output
*
* Print WALL time if machine supports it
*
IF( WTIME( 1 ) + WTIME( 2 ) .GT. 0.0D+0 ) THEN
TMFLOPS = NOPS /
$ ( ( WTIME( 1 )+WTIME( 2 ) ) * 1.0D+6 )
ELSE
TMFLOPS = 0.0D+0
END IF
*
IF( WTIME( 1 )+WTIME( 2 ).GT.0.0D+0 ) THEN
TMFLOPS2 = NOPS2 /
$ ( ( WTIME( 1 )+WTIME( 2 ) ) * 1.0D+6 )
ELSE
TMFLOPS2 = 0.0D+0
END IF
*
IF( WTIME( 2 ).GE.0.0D+0 )
$ WRITE( NOUT, FMT = 9993 ) 'WALL', TRANS,
$ N,
$ BWL, BWU,
$ NB, NRHS, NPROW, NPCOL,
$ WTIME( 1 ), WTIME( 2 ), TMFLOPS,
$ TMFLOPS2, PASSED
*
* Print CPU time if machine supports it
*
IF( CTIME( 1 )+CTIME( 2 ).GT.0.0D+0 ) THEN
TMFLOPS = NOPS /
$ ( ( CTIME( 1 )+CTIME( 2 ) ) * 1.0D+6 )
ELSE
TMFLOPS = 0.0D+0
END IF
*
IF( CTIME( 1 )+CTIME( 2 ).GT.0.0D+0 ) THEN
TMFLOPS2 = NOPS2 /
$ ( ( CTIME( 1 )+CTIME( 2 ) ) * 1.0D+6 )
ELSE
TMFLOPS2 = 0.0D+0
END IF
*
IF( CTIME( 2 ).GE.0.0D+0 )
$ WRITE( NOUT, FMT = 9993 ) 'CPU ', TRANS,
$ N,
$ BWL, BWU,
$ NB, NRHS, NPROW, NPCOL,
$ CTIME( 1 ), CTIME( 2 ), TMFLOPS,
$ TMFLOPS2, PASSED
*
END IF
20 CONTINUE
*
*
30 CONTINUE
* NNB loop
*
45 CONTINUE
* BW[] loop
*
40 CONTINUE
* NMAT loop
*
CALL BLACS_GRIDEXIT( ICTXT )
CALL BLACS_GRIDEXIT( ICTXTB )
*
50 CONTINUE
* NGRIDS DROPOUT
60 CONTINUE
* NGRIDS loop
*
* Print ending messages and close output file
*
IF( IAM.EQ.0 ) THEN
KTESTS = KPASS + KFAIL + KSKIP
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9992 ) KTESTS
IF( CHECK ) THEN
WRITE( NOUT, FMT = 9991 ) KPASS
WRITE( NOUT, FMT = 9989 ) KFAIL
ELSE
WRITE( NOUT, FMT = 9990 ) KPASS
END IF
WRITE( NOUT, FMT = 9988 ) KSKIP
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9987 )
IF( NOUT.NE.6 .AND. NOUT.NE.0 )
$ CLOSE ( NOUT )
END IF
*
CALL BLACS_EXIT( 0 )
*
9999 FORMAT( 'ILLEGAL ', A6, ': ', A5, ' = ', I3,
$ '; It should be at least 1' )
9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', I4, '. It can be at most',
$ I4 )
9997 FORMAT( 'Bad ', A6, ' parameters: going on to next test case.' )
9996 FORMAT( 'Unable to perform ', A, ': need TOTMEM of at least',
$ I11 )
9995 FORMAT( 'TIME TR N BWL BWU NB NRHS P Q L*U Time ',
$ 'Slv Time MFLOPS MFLOP2 CHECK' )
9994 FORMAT( '---- -- ------ --- --- ---- ----- ---- ---- -------- ',
$ '-------- -------- -------- ------' )
9993 FORMAT( A4,1X,A1,2X,I6,1X,I3,1X,I3,1X,I4,1X,I5,
$ 1X,I4,1X,I4,1X,F9.3,
$ F9.4, F9.2, F9.2, 1X, A6 )
9992 FORMAT( 'Finished ', I6, ' tests, with the following results:' )
9991 FORMAT( I5, ' tests completed and passed residual checks.' )
9990 FORMAT( I5, ' tests completed without checking.' )
9989 FORMAT( I5, ' tests completed and failed residual checks.' )
9988 FORMAT( I5, ' tests skipped because of illegal input values.' )
9987 FORMAT( 'END OF TESTS.' )
9986 FORMAT( '||A - ', A4, '|| / (||A|| * N * eps) = ', G25.7 )
9985 FORMAT( '||Ax-b||/(||x||*||A||*eps*N) ', F25.7 )
*
STOP
*
* End of PZDTTRS_DRIVER
*
END
*
|