File: pzdtdriver.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (933 lines) | stat: -rw-r--r-- 32,168 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
      PROGRAM PZDTDRIVER
*
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*  Purpose
*  =======
*
*  PZDTDRIVER is a test program for the
*  ScaLAPACK Band Cholesky routines corresponding to the options
*  indicated by ZDT.  This test driver performs an
*  A = L*U factorization
*  and solves a linear system with the factors for 1 or more RHS.
*
*  The program must be driven by a short data file.
*  Here's an example file:
*'ScaLAPACK, Version 1.2, banded linear systems input file'
*'PVM.'
*''                              output file name (if any)
*6                               device out
*'L'                             define Lower or Upper
*9                               number of problem sizes
*1 5 17 28 37 121 200 1023 2048 3073     values of N
*6                               number of bandwidths
*1 2 4 10 31 64                values of BW
*1                               number of NB's
*-1 3 4 5                        values of NB (-1 for automatic choice)
*1                               number of NRHS's (must be 1)
*8                               values of NRHS
*1                               number of NBRHS's (ignored)
*1                               values of NBRHS (ignored)
*6                               number of process grids
*1 2 3 4 5 7 8 15 26 47 64       values of "Number of Process Columns"
*3.0                             threshold
*
*  Internal Parameters
*  ===================
*
*  TOTMEM   INTEGER, default = 6200000.
*           TOTMEM is a machine-specific parameter indicating the
*           maximum amount of available memory in bytes.
*           The user should customize TOTMEM to his platform.  Remember
*           to leave room in memory for the operating system, the BLACS
*           buffer, etc.  For example, on a system with 8 MB of memory
*           per process (e.g., one processor on an Intel iPSC/860), the
*           parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
*           code, BLACS buffer, etc).  However, for PVM, we usually set
*           TOTMEM = 2000000.  Some experimenting with the maximum value
*           of TOTMEM may be required.
*
*  INTGSZ   INTEGER, default = 4 bytes.
*  ZPLXSZ   INTEGER, default = 16 bytes.
*           INTGSZ and ZPLXSZ indicate the length in bytes on the
*           given platform for an integer and a double precision
*           complex.
*  MEM      COMPLEX*16 array, dimension ( TOTMEM/ZPLXSZ )
*           All arrays used by ScaLAPACK routines are allocated from
*           this array and referenced by pointers.  The integer IPB,
*           for example, is a pointer to the starting element of MEM for
*           the solution vector(s) B.
*
*  =====================================================================
*
*  Code Developer: Andrew J. Cleary, University of Tennessee.
*    Current address: Lawrence Livermore National Labs.
*  This version released: August, 2001.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            TOTMEM
      PARAMETER          ( TOTMEM = 3000000 )
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*
      DOUBLE PRECISION   ZERO
      INTEGER            MEMSIZ, NTESTS, ZPLXSZ
      COMPLEX*16         PADVAL
      PARAMETER          ( ZPLXSZ = 16,
     $                     MEMSIZ = TOTMEM / ZPLXSZ, NTESTS = 20,
     $                     PADVAL = ( -9923.0D+0, -9923.0D+0 ),
     $                     ZERO = 0.0D+0 )
      INTEGER            INT_ONE
      PARAMETER          ( INT_ONE = 1 )
*     ..
*     .. Local Scalars ..
      LOGICAL            CHECK
      CHARACTER          TRANS
      CHARACTER*6        PASSED
      CHARACTER*80       OUTFILE
      INTEGER            BWL, BWU, BW_NUM, FILLIN_SIZE, FREE_PTR, H, HH,
     $                   I, IAM, IASEED, IBSEED, ICTXT, ICTXTB,
     $                   IERR_TEMP, IMIDPAD, INFO, IPA, IPB, IPOSTPAD,
     $                   IPREPAD, IPW, IPW_SIZE, IPW_SOLVE,
     $                   IPW_SOLVE_SIZE, IP_DRIVER_W, IP_FILLIN, J, K,
     $                   KFAIL, KPASS, KSKIP, KTESTS, MYCOL, MYRHS_SIZE,
     $                   MYROW, N, NB, NBW, NGRIDS, NMAT, NNB, NNBR,
     $                   NNR, NOUT, NP, NPCOL, NPROCS, NPROCS_REAL,
     $                   NPROW, NQ, NRHS, N_FIRST, N_LAST, WORKSIZ
      REAL               THRESH
            DOUBLE PRECISION    ANORM, NOPS, NOPS2, SRESID, TMFLOPS,
     $                          TMFLOPS2
*     ..
*     .. Local Arrays ..
      INTEGER            BWLVAL( NTESTS ), BWUVAL( NTESTS ), DESCA( 7 ),
     $                   DESCA2D( DLEN_ ), DESCB( 7 ), DESCB2D( DLEN_ ),
     $                   IERR( 1 ), NBRVAL( NTESTS ), NBVAL( NTESTS ),
     $                   NRVAL( NTESTS ), NVAL( NTESTS ),
     $                   PVAL( NTESTS ), QVAL( NTESTS )
      DOUBLE PRECISION   CTIME( 2 ), WTIME( 2 )
      COMPLEX*16         MEM( MEMSIZ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
     $                   BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
     $                   BLACS_PINFO, DESCINIT, IGSUM2D, PZBMATGEN,
     $                   PZCHEKPAD, PZDTINFO, PZDTLASCHK, PZDTTRF,
     $                   PZDTTRS, PZFILLPAD, PZMATGEN, SLBOOT,
     $                   SLCOMBINE, SLTIMER
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      LOGICAL            LSAME
      DOUBLE PRECISION   PZLANGE
      EXTERNAL           LSAME, NUMROC, PZLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN, MOD
*     ..
*     .. Data Statements ..
      DATA               KFAIL, KPASS, KSKIP, KTESTS / 4*0 /
*     ..
*
*
*
*     .. Executable Statements ..
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      IASEED = 100
      IBSEED = 200
*
      CALL PZDTINFO( OUTFILE, NOUT, TRANS, NMAT, NVAL, NTESTS, NBW,
     $               BWLVAL, BWUVAL, NTESTS, NNB, NBVAL, NTESTS, NNR,
     $               NRVAL, NTESTS, NNBR, NBRVAL, NTESTS, NGRIDS, PVAL,
     $               NTESTS, QVAL, NTESTS, THRESH, MEM, IAM, NPROCS )
*
      CHECK = ( THRESH.GE.0.0D+0 )
*
*     Print headings
*
      IF( IAM.EQ.0 ) THEN
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9995 )
         WRITE( NOUT, FMT = 9994 )
         WRITE( NOUT, FMT = * )
      END IF
*
*     Loop over different process grids
*
      DO 60 I = 1, NGRIDS
*
         NPROW = PVAL( I )
         NPCOL = QVAL( I )
*
*        Make sure grid information is correct
*
         IERR( 1 ) = 0
         IF( NPROW.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID', 'nprow', NPROW
            IERR( 1 ) = 1
         ELSE IF( NPCOL.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID', 'npcol', NPCOL
            IERR( 1 ) = 1
         ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
            IERR( 1 ) = 1
         END IF
*
         IF( IERR( 1 ).GT.0 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9997 ) 'grid'
            KSKIP = KSKIP + 1
            GO TO 50
         END IF
*
*        Define process grid
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
*
*
*        Define transpose process grid
*
         CALL BLACS_GET( -1, 0, ICTXTB )
         CALL BLACS_GRIDINIT( ICTXTB, 'Column-major', NPCOL, NPROW )
*
*        Go to bottom of process grid loop if this case doesn't use my
*        process
*
         CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
         IF( MYROW.LT.0 .OR. MYCOL.LT.0 ) THEN
            GO TO 50
         ENDIF
*
         DO 40 J = 1, NMAT
*
           IERR( 1 ) = 0
*
           N = NVAL( J )
*
*          Make sure matrix information is correct
*
           IF( N.LT.1 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'MATRIX', 'N', N
               IERR( 1 ) = 1
           END IF
*
*          Check all processes for an error
*
           CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
     $                    -1, 0 )
*
           IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'size'
               KSKIP = KSKIP + 1
               GO TO 40
           END IF
*
*
           DO 45 BW_NUM = 1, NBW
*
             IERR( 1 ) = 0
*
             BWL = 1
             IF( BWL.LT.1 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'Lower Band', 'bwl', BWL
               IERR( 1 ) = 1
             END IF
*
             BWU = 1
             IF( BWU.LT.1 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'Upper Band', 'bwu', BWU
               IERR( 1 ) = 1
             END IF
*
             IF( BWL.GT.N-1 ) THEN
               IF( IAM.EQ.0 ) THEN
                 IERR( 1 ) = 1
               ENDIF
             END IF
*
             IF( BWU.GT.N-1 ) THEN
               IF( IAM.EQ.0 ) THEN
                 IERR( 1 ) = 1
               ENDIF
             END IF
*
*            Check all processes for an error
*
             CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
     $                    -1, 0 )
*
             IF( IERR( 1 ).GT.0 ) THEN
               KSKIP = KSKIP + 1
               GO TO 45
             END IF
*
             DO 30 K = 1, NNB
*
               IERR( 1 ) = 0
*
               NB = NBVAL( K )
               IF( NB.LT.0 ) THEN
                  NB =( (N-(NPCOL-1)*INT_ONE-1)/NPCOL + 1 )
     $               + INT_ONE
                  NB = MAX( NB, 2*INT_ONE )
                  NB = MIN( N, NB )
               END IF
*
*              Make sure NB is legal
*
               IERR( 1 ) = 0
               IF( NB.LT.MIN( 2*INT_ONE, N ) ) THEN
                  IERR( 1 ) = 1
               END IF
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
     $                       -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
*              Padding constants
*
               NP = NUMROC( (3), (3),
     $                      MYROW, 0, NPROW )
               NQ = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
               IF( CHECK ) THEN
                  IPREPAD  = ((3)+10)
                  IMIDPAD  = 10
                  IPOSTPAD = ((3)+10)
               ELSE
                  IPREPAD  = 0
                  IMIDPAD  = 0
                  IPOSTPAD = 0
               END IF
*
*              Initialize the array descriptor for the matrix A
*
               CALL DESCINIT( DESCA2D, N, (3),
     $                       NB, 1, 0, 0,
     $                       ICTXTB, NB+10, IERR( 1 ) )
*
*              Convert this to 1D descriptor
*
               DESCA( 1 ) = 501
               DESCA( 3 ) = N
               DESCA( 4 ) = NB
               DESCA( 5 ) = 0
               DESCA( 2 ) = ICTXT
               DESCA( 6 ) = ((3)+10)
               DESCA( 7 ) = 0
*
               IERR_TEMP = IERR( 1 )
               IERR( 1 ) = 0
               IERR( 1 ) = MIN( IERR( 1 ), IERR_TEMP )
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
               IF( IERR( 1 ).LT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'descriptor'
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
*              Assign pointers into MEM for SCALAPACK arrays, A is
*              allocated starting at position MEM( IPREPAD+1 )
*
               FREE_PTR = 1
               IPB = 0
*
*              Save room for prepadding
               FREE_PTR = FREE_PTR + IPREPAD
*
               IPA = FREE_PTR
               FREE_PTR = FREE_PTR + (NB+10)*(3)
     $                     + IPOSTPAD
*
*              Add memory for fillin
*              Fillin space needs to store:
*                Fillin spike:
*                Contribution to previous proc's diagonal block of
*                  reduced system:
*                Off-diagonal block of reduced system:
*                Diagonal block of reduced system:
*
               FILLIN_SIZE =
     $            (12*NPCOL+3*NB)
*
*              Claim memory for fillin
*
               FREE_PTR = FREE_PTR + IPREPAD
               IP_FILLIN = FREE_PTR
               FREE_PTR = FREE_PTR + FILLIN_SIZE
*
*              Workspace needed by computational routines:
*
               IPW_SIZE = 0
*
*              factorization:
*
               IPW_SIZE = 8*NPCOL
*
*              Claim memory for IPW
*
               IPW = FREE_PTR
               FREE_PTR = FREE_PTR + IPW_SIZE
*
*              Check for adequate memory for problem size
*
               IERR( 1 ) = 0
               IF( FREE_PTR.GT.MEMSIZ ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9996 )
     $               'divide and conquer factorization',
     $               (FREE_PTR )*ZPLXSZ
                  IERR( 1 ) = 1
               END IF
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR,
     $                       1, -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
*              Worksize needed for LAPRNT
               WORKSIZ = MAX( ((3)+10), NB )
*
               IF( CHECK ) THEN
*
*                 Calculate the amount of workspace required by
*                 the checking routines.
*
*                 PZLANGE
                  WORKSIZ = MAX( WORKSIZ, DESCA2D( NB_ ) )
*
*                 PZDTLASCHK
                  WORKSIZ = MAX( WORKSIZ,
     $          MAX(5,NB)+2*NB )
               END IF
*
               FREE_PTR = FREE_PTR + IPREPAD
               IP_DRIVER_W = FREE_PTR
               FREE_PTR = FREE_PTR + WORKSIZ + IPOSTPAD
*
*
*              Check for adequate memory for problem size
*
               IERR( 1 ) = 0
               IF( FREE_PTR.GT.MEMSIZ ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9996 ) 'factorization',
     $               ( FREE_PTR )*ZPLXSZ
                  IERR( 1 ) = 1
               END IF
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR,
     $                       1, -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
               CALL PZBMATGEN( ICTXT, 'T', 'D', BWL, BWU, N, (3), NB,
     $                         MEM( IPA ), NB+10, 0, 0, IASEED, MYROW,
     $                         MYCOL, NPROW, NPCOL )
               CALL PZFILLPAD( ICTXT, NQ, NP, MEM( IPA-IPREPAD ),
     $                          NB+10, IPREPAD, IPOSTPAD,
     $                          PADVAL )
*
               CALL PZFILLPAD( ICTXT, WORKSIZ, 1,
     $                          MEM( IP_DRIVER_W-IPREPAD ), WORKSIZ,
     $                          IPREPAD, IPOSTPAD, PADVAL )
*
*              Calculate norm of A for residual error-checking
*
               IF( CHECK ) THEN
*
                  ANORM = PZLANGE( 'I', N,
     $                            (3), MEM( IPA ), 1, 1,
     $                            DESCA2D, MEM( IP_DRIVER_W ) )
                  CALL PZCHEKPAD( ICTXT, 'PZLANGE', NQ, NP,
     $                         MEM( IPA-IPREPAD ), NB+10,
     $                         IPREPAD, IPOSTPAD, PADVAL )
                  CALL PZCHEKPAD( ICTXT, 'PZLANGE',
     $                            WORKSIZ, 1,
     $                            MEM( IP_DRIVER_W-IPREPAD ), WORKSIZ,
     $                            IPREPAD, IPOSTPAD, PADVAL )
               END IF
*
*
               CALL SLBOOT()
               CALL BLACS_BARRIER( ICTXT, 'All' )
*
*              Perform factorization
*
               CALL SLTIMER( 1 )
*
               CALL PZDTTRF( N, MEM( IPA+2*( NB+10 ) ),
     $                       MEM( IPA+1*( NB+10 ) ), MEM( IPA ), 1,
     $                       DESCA, MEM( IP_FILLIN ), FILLIN_SIZE,
     $                       MEM( IPW ), IPW_SIZE, INFO )
*
               CALL SLTIMER( 1 )
*
               IF( INFO.NE.0 ) THEN
                  IF( IAM.EQ.0 ) THEN
                    WRITE( NOUT, FMT = * ) 'PZDTTRF INFO=', INFO
                  ENDIF
                  KFAIL = KFAIL + 1
                  GO TO 30
               END IF
*
               IF( CHECK ) THEN
*
*                 Check for memory overwrite in factorization
*
                  CALL PZCHEKPAD( ICTXT, 'PZDTTRF', NQ,
     $                         NP, MEM( IPA-IPREPAD ), NB+10,
     $                         IPREPAD, IPOSTPAD, PADVAL )
               END IF
*
*
*              Loop over the different values for NRHS
*
               DO 20 HH = 1, NNR
*
                  IERR( 1 ) = 0
*
                  NRHS = NRVAL( HH )
*
*                    Initialize Array Descriptor for rhs
*
                     CALL DESCINIT( DESCB2D, N, NRHS, NB, 1, 0, 0,
     $                             ICTXTB, NB+10, IERR( 1 ) )
*
*                    Convert this to 1D descriptor
*
                     DESCB( 1 ) = 502
                     DESCB( 3 ) = N
                     DESCB( 4 ) = NB
                     DESCB( 5 ) = 0
                     DESCB( 2 ) = ICTXT
                     DESCB( 6 ) = DESCB2D( LLD_ )
                     DESCB( 7 ) = 0
*
*                    reset free_ptr to reuse space for right hand sides
*
                     IF( IPB .GT. 0 ) THEN
                       FREE_PTR = IPB
                     ENDIF
*
                     FREE_PTR = FREE_PTR + IPREPAD
                     IPB = FREE_PTR
                     FREE_PTR = FREE_PTR + NRHS*DESCB2D( LLD_ )
     $                          + IPOSTPAD
*
*                    Allocate workspace for workspace in TRS routine:
*
                     IPW_SOLVE_SIZE = 10*NPCOL+4*NRHS
*
                     IPW_SOLVE = FREE_PTR
                     FREE_PTR = FREE_PTR + IPW_SOLVE_SIZE
*
                     IERR( 1 ) = 0
                     IF( FREE_PTR.GT.MEMSIZ ) THEN
                        IF( IAM.EQ.0 )
     $                     WRITE( NOUT, FMT = 9996 )'solve',
     $                            ( FREE_PTR )*ZPLXSZ
                        IERR( 1 ) = 1
                     END IF
*
*                    Check all processes for an error
*
                     CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1,
     $                             IERR, 1, -1, 0 )
*
                     IF( IERR( 1 ).GT.0 ) THEN
                        IF( IAM.EQ.0 )
     $                     WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                        KSKIP = KSKIP + 1
                        GO TO 15
                     END IF
*
                     MYRHS_SIZE = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
*                    Generate RHS
*
                     CALL PZMATGEN(ICTXTB, 'No', 'No',
     $                        DESCB2D( M_ ), DESCB2D( N_ ),
     $                        DESCB2D( MB_ ), DESCB2D( NB_ ),
     $                        MEM( IPB ),
     $                        DESCB2D( LLD_ ), DESCB2D( RSRC_ ),
     $                        DESCB2D( CSRC_ ),
     $                        IBSEED, 0, MYRHS_SIZE, 0, NRHS, MYCOL,
     $                        MYROW, NPCOL, NPROW )
*
                     IF( CHECK ) THEN
                        CALL PZFILLPAD( ICTXTB, NB, NRHS,
     $                                  MEM( IPB-IPREPAD ),
     $                                  DESCB2D( LLD_ ),
     $                                  IPREPAD, IPOSTPAD,
     $                                  PADVAL )
                        CALL PZFILLPAD( ICTXT, WORKSIZ, 1,
     $                                  MEM( IP_DRIVER_W-IPREPAD ),
     $                                  WORKSIZ, IPREPAD,
     $                                  IPOSTPAD, PADVAL )
                     END IF
*
*
                     CALL BLACS_BARRIER( ICTXT, 'All')
                     CALL SLTIMER( 2 )
*
*                    Solve linear system via factorization
*
                     CALL PZDTTRS( TRANS, N, NRHS,
     $                             MEM( IPA+2*( NB+10 ) ),
     $                             MEM( IPA+1*( NB+10 ) ), MEM( IPA ),
     $                             1, DESCA, MEM( IPB ), 1, DESCB,
     $                             MEM( IP_FILLIN ), FILLIN_SIZE,
     $                             MEM( IPW_SOLVE ), IPW_SOLVE_SIZE,
     $                             INFO )
*
                     CALL SLTIMER( 2 )
*
                     IF( INFO.NE.0 ) THEN
                       IF( IAM.EQ.0 )
     $  WRITE( NOUT, FMT = * ) 'PZDTTRS INFO=', INFO
                       KFAIL = KFAIL + 1
                       PASSED = 'FAILED'
                       GO TO 20
                     END IF
*
                     IF( CHECK ) THEN
*
*                       check for memory overwrite
*
                        CALL PZCHEKPAD( ICTXT, 'PZDTTRS-work',
     $                                  WORKSIZ, 1,
     $                                  MEM( IP_DRIVER_W-IPREPAD ),
     $                                  WORKSIZ, IPREPAD,
     $                                  IPOSTPAD, PADVAL )
*
*                       check the solution to rhs
*
                        SRESID = ZERO
*
*                       Reset descriptor describing A to 1-by-P grid for
*                          use in banded utility routines
*
                        CALL DESCINIT( DESCA2D, (3), N,
     $                       (3), NB, 0, 0,
     $                       ICTXT, (3), IERR( 1 ) )
                        CALL PZDTLASCHK( 'N', 'D', TRANS,
     $                       N, BWL, BWU, NRHS,
     $                       MEM( IPB ), 1, 1, DESCB2D,
     $                       IASEED, MEM( IPA ), 1, 1, DESCA2D,
     $                       IBSEED, ANORM, SRESID,
     $                       MEM( IP_DRIVER_W ), WORKSIZ )
*
                        IF( IAM.EQ.0 ) THEN
                           IF( SRESID.GT.THRESH )
     $                        WRITE( NOUT, FMT = 9985 ) SRESID
                        END IF
*
*                       The second test is a NaN trap
*
                        IF( ( SRESID.LE.THRESH          ).AND.
     $                      ( (SRESID-SRESID).EQ.0.0D+0 ) ) THEN
                           KPASS = KPASS + 1
                           PASSED = 'PASSED'
                        ELSE
                           KFAIL = KFAIL + 1
                           PASSED = 'FAILED'
                        END IF
*
                     END IF
*
   15                CONTINUE
*                    Skipped tests jump to here to print out "SKIPPED"
*
*                    Gather maximum of all CPU and WALL clock timings
*
                     CALL SLCOMBINE( ICTXT, 'All', '>', 'W', 2, 1,
     $                               WTIME )
                     CALL SLCOMBINE( ICTXT, 'All', '>', 'C', 2, 1,
     $                               CTIME )
*
*                    Print results
*
                     IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
*
                        NOPS = 0
                        NOPS2 = 0
*
                        N_FIRST = NB
                        NPROCS_REAL = ( N-1 )/NB + 1
                        N_LAST = MOD( N-1, NB ) + 1
*
*                       2 N bwl INT_ONE + N (bwl) flops
*                          for LU factorization
*
                        NOPS = 2*(DBLE(N)*DBLE(BWL)*
     $                         DBLE(INT_ONE)) +
     $                         (DBLE(N)*DBLE(BWL))
*
*                       nrhs * 2 N*(bwl+INT_ONE) flops for LU solve.
*
                        NOPS = NOPS +
     $                  2 * (DBLE(N)*(DBLE(BWL)+DBLE(INT_ONE))
     $                   *DBLE(NRHS))
*
*                       Multiply by 4 to get complex count
*
                        NOPS = NOPS * DBLE(4)
*
*                       Second calc to represent actual hardware speed
*
*                     2*N_FIRST bwl*bwu Flops for LU
*                       factorization in proc 1
*
                      NOPS2 = 2*( (DBLE(N_FIRST)*
     $                  DBLE(BWL)*DBLE(BWU)))
*
                      IF ( NPROCS_REAL .GT. 1) THEN
*                       8 N_LAST bwl*INT_ONE
*                         flops for LU and spike
*                         calc in last processor
*
                        NOPS2 = NOPS2 +
     $                          8*( (DBLE(N_LAST)*DBLE(BWL)
     $                          *DBLE(INT_ONE)) )
                      ENDIF
*
                      IF ( NPROCS_REAL .GT. 2) THEN
*                       8 NB bwl*INT_ONE  flops for LU and spike
*                         calc in other processors
*
                        NOPS2 = NOPS2 + (NPROCS_REAL-2)*
     $                          8*( (DBLE(NB)*DBLE(BWL)
     $                          *DBLE(INT_ONE)) )
                      ENDIF
*
*                     Reduced system
*
                      NOPS2 = NOPS2 +
     $                  2*( NPROCS_REAL-1 ) *
     $                  ( BWL*INT_ONE*BWL/3 )
                      IF( NPROCS_REAL .GT. 1 ) THEN
                        NOPS2 = NOPS2 +
     $                    2*( NPROCS_REAL-2 ) *
     $                    (2*BWL*INT_ONE*BWL)
                      ENDIF
*
*                     Solve stage
*
*                     nrhs*2 n_first*
*                        (bwl+INT_ONE)
*                        flops for L,U solve in proc 1.
*
                      NOPS2 = NOPS2 +
     $                  2*
     $                  DBLE(N_FIRST)*
     $                  DBLE(NRHS) *
     $                  ( DBLE(BWL)+DBLE(INT_ONE))
*
                      IF ( NPROCS_REAL .GT. 1 ) THEN
*
*                       2*nrhs*2 n_last
*                        (bwl+INT_ONE)
*                       flops for LU solve in other procs
*
                        NOPS2 = NOPS2 +
     $                    4*
     $                    (DBLE(N_LAST)*(DBLE(BWL)+
     $                    DBLE(INT_ONE)))*DBLE(NRHS)
                      ENDIF
*
                      IF ( NPROCS_REAL .GT. 2 ) THEN
*
*                       2*nrhs*2 NB
*                        (bwl+INT_ONE)
*                        flops for LU solve in other procs
*
                        NOPS2 = NOPS2 +
     $                    ( NPROCS_REAL-2)*2*
     $                 ( (DBLE(NB)*(DBLE(BWL)+
     $                 DBLE(INT_ONE)))*DBLE(NRHS) )
                      ENDIF
*
*                     Reduced system
*
                      NOPS2 = NOPS2 +
     $                  NRHS*( NPROCS_REAL-1)*2*(BWL*INT_ONE )
                      IF( NPROCS_REAL .GT. 1 ) THEN
                        NOPS2 = NOPS2 +
     $                   NRHS*( NPROCS_REAL-2 ) *
     $                   ( 6 * BWL*INT_ONE )
                      ENDIF
*
*
*                     Multiply by 4 to get complex count
*
                      NOPS2 = NOPS2 * DBLE(4)
*
*                       Calculate total megaflops - factorization and/or
*                       solve -- for WALL and CPU time, and print output
*
*                       Print WALL time if machine supports it
*
                        IF( WTIME( 1 ) + WTIME( 2 ) .GT. 0.0D+0 ) THEN
                           TMFLOPS = NOPS /
     $                            ( ( WTIME( 1 )+WTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS = 0.0D+0
                        END IF
*
                        IF( WTIME( 1 )+WTIME( 2 ).GT.0.0D+0 ) THEN
                           TMFLOPS2 = NOPS2 /
     $                            ( ( WTIME( 1 )+WTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS2 = 0.0D+0
                        END IF
*
                        IF( WTIME( 2 ).GE.0.0D+0 )
     $                     WRITE( NOUT, FMT = 9993 ) 'WALL', TRANS,
     $                            N,
     $                            BWL, BWU,
     $                            NB, NRHS, NPROW, NPCOL,
     $                            WTIME( 1 ), WTIME( 2 ), TMFLOPS,
     $                            TMFLOPS2, PASSED
*
*                       Print CPU time if machine supports it
*
                        IF( CTIME( 1 )+CTIME( 2 ).GT.0.0D+0 ) THEN
                           TMFLOPS = NOPS /
     $                            ( ( CTIME( 1 )+CTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS = 0.0D+0
                        END IF
*
                        IF( CTIME( 1 )+CTIME( 2 ).GT.0.0D+0 ) THEN
                           TMFLOPS2 = NOPS2 /
     $                            ( ( CTIME( 1 )+CTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS2 = 0.0D+0
                        END IF
*
                        IF( CTIME( 2 ).GE.0.0D+0 )
     $                     WRITE( NOUT, FMT = 9993 ) 'CPU ', TRANS,
     $                            N,
     $                            BWL, BWU,
     $                            NB, NRHS, NPROW, NPCOL,
     $                            CTIME( 1 ), CTIME( 2 ), TMFLOPS,
     $                            TMFLOPS2, PASSED
*
                     END IF
   20          CONTINUE
*
*
   30       CONTINUE
*           NNB loop
*
   45      CONTINUE
*          BW[] loop
*
   40   CONTINUE
*       NMAT loop
*
        CALL BLACS_GRIDEXIT( ICTXT )
        CALL BLACS_GRIDEXIT( ICTXTB )
*
   50   CONTINUE
*       NGRIDS DROPOUT
   60 CONTINUE
*     NGRIDS loop
*
*     Print ending messages and close output file
*
      IF( IAM.EQ.0 ) THEN
         KTESTS = KPASS + KFAIL + KSKIP
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9992 ) KTESTS
         IF( CHECK ) THEN
            WRITE( NOUT, FMT = 9991 ) KPASS
            WRITE( NOUT, FMT = 9989 ) KFAIL
         ELSE
            WRITE( NOUT, FMT = 9990 ) KPASS
         END IF
         WRITE( NOUT, FMT = 9988 ) KSKIP
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9987 )
         IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $      CLOSE ( NOUT )
      END IF
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A6, ': ', A5, ' = ', I3,
     $        '; It should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', I4, '. It can be at most',
     $        I4 )
 9997 FORMAT( 'Bad ', A6, ' parameters: going on to next test case.' )
 9996 FORMAT( 'Unable to perform ', A, ': need TOTMEM of at least',
     $        I11 )
 9995 FORMAT( 'TIME TR      N  BWL BWU    NB  NRHS    P    Q L*U Time ',
     $        'Slv Time   MFLOPS   MFLOP2  CHECK' )
 9994 FORMAT( '---- -- ------  --- ---  ---- ----- ---- ---- -------- ',
     $        '-------- -------- -------- ------' )
 9993 FORMAT( A4,1X,A1,2X,I6,1X,I3,1X,I3,1X,I4,1X,I5,
     $                                          1X,I4,1X,I4,1X,F9.3,
     $        F9.4,        F9.2,    F9.2, 1X, A6 )
 9992 FORMAT( 'Finished ', I6, ' tests, with the following results:' )
 9991 FORMAT( I5, ' tests completed and passed residual checks.' )
 9990 FORMAT( I5, ' tests completed without checking.' )
 9989 FORMAT( I5, ' tests completed and failed residual checks.' )
 9988 FORMAT( I5, ' tests skipped because of illegal input values.' )
 9987 FORMAT( 'END OF TESTS.' )
 9986 FORMAT( '||A - ', A4, '|| / (||A|| * N * eps) = ', G25.7 )
 9985 FORMAT( '||Ax-b||/(||x||*||A||*eps*N) ', F25.7 )
*
      STOP
*
*     End of PZDTTRS_DRIVER
*
      END
*