File: pzpotrrv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (328 lines) | stat: -rw-r--r-- 12,244 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
      SUBROUTINE PZPOTRRV( UPLO, N, A, IA, JA, DESCA, WORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 28, 2001
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            IA, JA, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      COMPLEX*16         A( * ),  WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PZPOTRRV recomputes sub( A ) = A(IA:IA+N-1,JA:JA+N-1) from L or U
*  computed by PZPOTRF. The routine performs the Cholesky factorization
*  in reverse.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER
*          Specifies whether the upper or lower triangular part of the
*          hermitian distributed matrix sub( A ) is stored:
*          stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, the local pieces of the factors L or U of the
*          distributed matrix sub( A ) from the Cholesky factorization.
*          On exit, the original distributed matrix sub( A ) is
*          restored.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  WORK    (local workspace) COMPLEX*16 array, dimension (LWORK)
*          LWORK >= MB_A*NB_A.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
      COMPLEX*16         CONE, ZERO
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
     $                     ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      CHARACTER          COLBTOP, ROWBTOP
      INTEGER            IACOL, IAROW, ICTXT, IL, J, JB, JL, JN, MYCOL,
     $                   MYROW, NPCOL, NPROW
*     .. Local Arrays ..
      INTEGER            DESCW( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, PB_TOPGET, PB_TOPSET,
     $                   PZLACPY, PZLASET, PZHERK, PZTRMM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, INDXG2P
      EXTERNAL           ICEIL, INDXG2P, LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
      UPPER = LSAME( UPLO, 'U' )
      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
      JL = MAX( ( ( JA+N-2 ) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1, JA )
      IL = MAX( ( ( IA+N-2 ) / DESCA( MB_ ) ) * DESCA( MB_ ) + 1, IA )
      IAROW = INDXG2P( IL, DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW )
      IACOL = INDXG2P( JL, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ), NPCOL )
*
*     Define array descriptor for working array WORK
*
      CALL DESCSET( DESCW, DESCA( MB_ ), DESCA( NB_ ), DESCA( MB_ ),
     $              DESCA( NB_ ), IAROW, IACOL, ICTXT, DESCA( MB_ ) )
*
      IF ( UPPER ) THEN
*
*       Compute A from the Cholesky factor U : A = U'*U.
*
        CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ' ' )
        CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'S-ring' )
*
        DO 10 J = JL, JN+1, -DESCA( NB_ )
*
           JB = MIN( JA+N-J, DESCA( NB_ ) )
*
*          Update the trailing matrix, A = A + U'*U
*
           CALL PZHERK( 'Upper', 'Conjugate Transpose', JA+N-J-JB, JB,
     $                  ONE, A, IL, J+JB, DESCA, ONE, A, IL+JB, J+JB,
     $                  DESCA )
*
*          Copy current diagonal block of A into workspace
*
           CALL PZLACPY( 'All', JB, JB, A, IL, J, DESCA, WORK, 1, 1,
     $                   DESCW )
*
*          Zero strict lower triangular part of diagonal block, to make
*          it U1.
*
           CALL PZLASET( 'Lower', JB-1, JB, ZERO, ZERO, A, IL+1, J,
     $                   DESCA )
*
*          Update the row panel U with the triangular matrix
*
           CALL PZTRMM( 'Left', 'Upper', 'Conjugate Transpose',
     $                  'Non-Unit', JB, N-J+JA, CONE, WORK, 1, 1,
     $                  DESCW, A, IL, J, DESCA )
*
*          Restore the strict lower triangular part of diagonal block.
*
           CALL PZLACPY( 'Lower', JB-1, JB, WORK, 2, 1, DESCW, A,
     $                    IL+1, J, DESCA )
*
           IL = IL - DESCA( MB_ )
           DESCW( RSRC_ ) = MOD( DESCW( RSRC_ ) + NPROW - 1, NPROW )
           DESCW( CSRC_ ) = MOD( DESCW( CSRC_ ) + NPCOL - 1, NPCOL )
*
   10   CONTINUE
*
*       Handle first block separately
*
        JB = MIN( JN-JA+1, DESCA( NB_ ) )
*
*       Update the trailing matrix, A = A + U'*U
*
        CALL PZHERK( 'Upper', 'Conjugate Transpose', N-JB, JB, ONE, A,
     $               IA, JA+JB, DESCA, ONE, A, IA+JB, JA+JB, DESCA )
*
*       Copy current diagonal block of A into workspace
*
        CALL PZLACPY( 'All', JB, JB, A, IA, JA, DESCA, WORK, 1, 1,
     $                DESCW )
*
*       Zero strict lower triangular part of diagonal block, to make
*       it U1.
*
        CALL PZLASET( 'Lower', JB-1, JB, ZERO, ZERO, A, IA+1, JA,
     $                DESCA )
*
*       Update the row panel U with the triangular matrix
*
        CALL PZTRMM( 'Left', 'Upper', 'Conjugate Transpose', 'Non-Unit',
     $               JB, N, CONE, WORK, 1, 1, DESCW, A, IA, JA, DESCA )
*
*       Restore the strict lower triangular part of diagonal block.
*
        CALL PZLACPY( 'Lower', JB-1, JB, WORK, 2, 1, DESCW, A, IA+1,
     $                JA, DESCA )
*
      ELSE
*
*       Compute A from the Cholesky factor L : A = L*L'.
*
        CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
        CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
*
        DO 20 J = JL, JN+1, -DESCA( NB_ )
*
           JB = MIN( JA+N-J, DESCA( NB_ ) )
*
*          Update the trailing matrix, A = A + L*L'
*
           CALL PZHERK( 'Lower', 'No Transpose', IA+N-IL-JB, JB, ONE, A,
     $                  IL+JB, J, DESCA, ONE, A, IL+JB, J+JB, DESCA )
*
*          Copy current diagonal block of A into workspace
*
           CALL PZLACPY( 'All', JB, JB, A, IL, J, DESCA, WORK, 1, 1,
     $                   DESCW )
*
*          Zero strict upper triangular part of diagonal block, to make
*          it L1.
*
           CALL PZLASET( 'Upper', JB, JB-1, ZERO, ZERO, A, IL, J+1,
     $                   DESCA )
*
*          Update the column panel L with the triangular matrix
*
           CALL PZTRMM( 'Right', 'Lower', 'Conjugate transpose',
     $                   'Non-Unit', IA+N-IL, JB, CONE, WORK, 1, 1,
     $                   DESCW, A, IL, J, DESCA )
*
*          Restore the strict upper triangular part of diagonal block.
*
           CALL PZLACPY( 'Upper', JB, JB-1, WORK, 1, 2, DESCW, A,
     $                   IL, J+1, DESCA )
*
           IL = IL - DESCA( MB_ )
           DESCW( RSRC_ ) = MOD( DESCW( RSRC_ ) + NPROW - 1, NPROW )
           DESCW( CSRC_ ) = MOD( DESCW( CSRC_ ) + NPCOL - 1, NPCOL )
*
   20   CONTINUE
*
*       Handle first block separately
*
        JB = MIN( JN-JA+1, DESCA( NB_ ) )
*
*       Update the trailing matrix, A = A + L*L'
*
        CALL PZHERK( 'Lower', 'No Transpose', N-JB, JB, ONE, A,
     $               IA+JB, JA, DESCA, ONE, A, IA+JB, JA+JB, DESCA )
*
*       Copy current diagonal block of A into workspace
*
        CALL PZLACPY( 'All', JB, JB, A, IA, JA, DESCA, WORK, 1, 1,
     $                DESCW )
*
*       Zero strict upper triangular part of diagonal block, to make
*       it L1.
*
        CALL PZLASET( 'Upper', JB, JB-1, ZERO, ZERO, A, IA, JA+1,
     $                DESCA )
*
*       Update the column panel L with the triangular matrix
*
        CALL PZTRMM( 'Right', 'Lower', 'Conjugate transpose',
     $                'Non-Unit', N, JB, CONE, WORK, 1, 1, DESCW, A,
     $                IA, JA, DESCA )
*
*       Restore the strict upper triangular part of diagonal block.
*
        CALL PZLACPY( 'Upper', JB, JB-1, WORK, 1, 2, DESCW, A, IA,
     $                JA+1, DESCA )
*
      END IF
*
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
      RETURN
*
*     End of PZPOTRRV
*
      END