File: pzqrt17.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (345 lines) | stat: -rw-r--r-- 13,865 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
      DOUBLE PRECISION FUNCTION PZQRT17( TRANS, IRESID, M, N, NRHS, A,
     $                                   IA, JA, DESCA, X, IX, JX,
     $                                   DESCX, B, IB, JB, DESCB, WORK,
     $                                   RWORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IA, IB, IRESID, IX, JA, JB, JX, M, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * ), DESCX( * )
      COMPLEX*16         A( * ), B( * ), WORK( * ), X( * )
      DOUBLE PRECISION   RWORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PZQRT17 computes the ratio
*
*     || R'*op( sub( A ) ) ||/(||sub( A )||*alpha*max(M,N,NRHS)*eps)
*
*  where R = op( sub( A ) )*sub( X ) - B, op(A) is A or A', and
*
*     alpha = ||B|| if IRESID = 1 (zero-residual problem)
*     alpha = ||R|| if IRESID = 2 (otherwise).
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  TRANS   (global input) CHARACTER*1
*          Specifies whether or not the transpose of sub( A ) is used.
*          = 'N':  No transpose, op( sub( A ) ) = sub( A ).
*          = 'C':  Conjugate transpose, op( sub( A ) ) = sub( A' ).
*
*  IRESID  (global input) INTEGER
*          IRESID = 1 indicates zero-residual problem.
*          IRESID = 2 indicates non-zero residual.
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*          If TRANS = 'N', the number of rows of the distributed
*          submatrix sub( B ).
*          If TRANS = 'C', the number of rows of the distributed
*          submatrix sub( X ).
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*          If TRANS = 'N', the number of rows of the distributed
*          submatrix sub( X ). Otherwise N is the number of rows of
*          the distributed submatrix sub( B ).
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed submatrices sub( X ) and sub( B ).
*          NRHS >= 0.
*
*  A       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_A,LOCc(JA+N-1)). This array
*          contains the local pieces of the distributed M-by-N
*          submatrix sub( A ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  X       (local input) COMPLEX*16 pointer into the local
*          memory to an array of dimension (LLD_X,LOCc(JX+NRHS-1)).
*          If TRANS = 'N', this array contains the local pieces of the
*          N-by-NRHS distributed submatrix sub( X ). Otherwise, this
*          array contains the local pieces of the M-by-NRHS distributed
*          submatrix sub( X ).
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  B       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_B,LOCc(JB+NRHS-1)).
*          If TRANS='N', this array contains the local pieces of the
*          distributed M-by-NRHS submatrix operand sub( B ). Otherwise,
*          this array contains the local pieces of the distributed
*          N-by-NRHS submatrix operand sub( B ).
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  WORK    (local workspace) COMPLEX*16 array, dimension (LWORK)
*          If TRANS = 'N', LWORK >= Mp0 * NRHSq0 + NRHSp0 * Nq0
*          otherwise       LWORK >= Np0 * NRHSq0 + NRHSp0 * Mq0
*
*  RWORK   (local workspace) DOUBLE PRECISION array, dimension (LRWORK)
*          LRWORK >= Nq0, if TRANS = 'N', and LRWORK >= Mp0 otherwise.
*
*          where
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          Np0 = NUMROC( N+ICOFFA, NB_A, MYROW, IAROW, NPROW ),
*          Mq0 = NUMROC( M+IROFFA, NB_A, MYCOL, IACOL, NPCOL ),
*          Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
*          IROFFB = MOD( IB-1, MB_B ), ICOFFB = MOD( JB-1, NB_B ),
*          IBROW = INDXG2P( IB, MB_B, MYROW, RSRC_B, NPROW ),
*          IBCOL = INDXG2P( JB, NB_B, MYCOL, CSRC_B, NPCOL ),
*          NRHSp0 = NUMROC( NRHS+ICOFFB, NB_B, MYROW, IBROW, NPROW ),
*          NRHSq0 = NUMROC( NRHS+ICOFFB, NB_B, MYCOL, IBCOL, NPCOL ).
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
*          MYCOL, NPROW and NPCOL can be determined by calling the
*          subroutine BLACS_GRIDINFO.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IACOL, IBCOL, IBROW, ICOFFB, ICTXT, INFO,
     $                   IOFFA, IROFFB, ISCL, IW, IW2, JW, JW2, MYCOL,
     $                   NRHSQ, NRHSP, MYROW, NCOLS, NPCOL, NPROW,
     $                   NROWS, NROWSP
      DOUBLE PRECISION   ERR, NORMA, NORMB, NORMRS, NORMX, SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            DESCW( DLEN_ ), DESCW2( DLEN_ )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            INDXG2P, NUMROC
      DOUBLE PRECISION   PDLAMCH, PZLANGE
      EXTERNAL           INDXG2P, LSAME, NUMROC, PDLAMCH, PZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, PZGEMM, PZLACPY,
     $                   PZLASCL, PXERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX
*     ..
*     .. Executable Statements ..
*
      PZQRT17 = ZERO
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      INFO = 0
      IF( LSAME( TRANS, 'N' ) ) THEN
         NROWS = M
         NCOLS = N
         IOFFA = MOD( JA-1, DESCA( NB_ ) )
      ELSE IF( LSAME( TRANS, 'C' ) ) THEN
         NROWS = N
         NCOLS = M
         IOFFA = MOD( IA-1, DESCA( MB_ ) )
      ELSE
         CALL PXERBLA( ICTXT, 'PZQRT17', -1 )
         RETURN
      END IF
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 )
     $   RETURN
*
      IROFFB = MOD( IA-1, DESCA( MB_ ) )
      ICOFFB = MOD( JA-1, DESCA( NB_ ) )
      IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $                 NPROW )
      IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $                 NPCOL )
      IBCOL = INDXG2P( JB, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
     $                 NPCOL )
*
      NRHSQ = NUMROC( NRHS+ICOFFB, DESCB( NB_ ), MYCOL, IBCOL, NPCOL )
      NRHSP = NUMROC( NRHS+IROFFB, DESCB( NB_ ), MYROW, IBROW, NPROW )
      NROWSP = NUMROC( NROWS+IROFFB, DESCA( MB_ ), MYROW, IBROW, NPROW )
*
*     Assign array descriptor DESCW for workspace WORK, where DESCW
*     holds a copy of the distributed submatrix sub( B )
*
      CALL DESCSET( DESCW, NROWS+IROFFB, NRHS+ICOFFB, DESCB( MB_ ),
     $              DESCB( NB_ ), IBROW, IBCOL, ICTXT, MAX( 1,
     $              NROWSP ) )
*
*     Assign array descriptor DESCW2 for workspace WORK, where DESCW2
*     holds a copy of the distributed submatrix sub( X**T )
*
      CALL DESCSET( DESCW2, NRHS+ICOFFB, NCOLS+IOFFA, DESCX( NB_ ),
     $              DESCX( MB_ ), IBROW, IACOL, ICTXT, MAX( 1,
     $              NRHSP ) )
*
      NORMA = PZLANGE( 'One-norm', M, N, A, IA, JA, DESCA, RWORK )
      SMLNUM = PDLAMCH( ICTXT, 'Safe minimum' )
      SMLNUM = SMLNUM / PDLAMCH( ICTXT, 'Precision' )
      ISCL = 0
*
*     compute residual and scale it
*
      IW = 1 + IROFFB
      JW = 1 + ICOFFB
      CALL PZLACPY( 'All', NROWS, NRHS, B, IB, JB, DESCB, WORK, IW, JW,
     $              DESCW )
      CALL PZGEMM( TRANS, 'No transpose', NROWS, NRHS, NCOLS,
     $             DCMPLX( -ONE ), A, IA, JA, DESCA, X, IX, JX, DESCX,
     $             DCMPLX( ONE ), WORK, IW, JW, DESCW )
      NORMRS = PZLANGE( 'Max', NROWS, NRHS, WORK, IW, JW, DESCW,
     $                  RWORK )
      IF( NORMRS.GT.SMLNUM ) THEN
         ISCL = 1
         CALL PZLASCL( 'General', NORMRS, ONE, NROWS, NRHS, WORK,
     $                 IW, JW, DESCW, INFO )
      END IF
*
*     compute R'*sub( A )
*
      IW2 = 1 + ICOFFB
      JW2 = 1 + IOFFA
      CALL PZGEMM( 'Conjugate transpose', TRANS, NRHS, NCOLS, NROWS,
     $             DCMPLX( ONE ), WORK, IW, JW, DESCW, A, IA, JA, DESCA,
     $             DCMPLX( ZERO ), WORK( NROWSP*NRHSQ+1 ), IW2, JW2,
     $             DESCW2 )
*
*     compute and properly scale error
*
      ERR = PZLANGE( 'One-norm', NRHS, NCOLS, WORK( NROWSP*NRHSQ+1 ),
     $               IW2, JW2, DESCW2, RWORK )
      IF( NORMA.NE.ZERO )
     $   ERR = ERR / NORMA
*
      IF( ISCL.EQ.1 )
     $   ERR = ERR*NORMRS
*
      IF( IRESID.EQ.1 ) THEN
         NORMB = PZLANGE( 'One-norm', NROWS, NRHS, B, IB, JB, DESCB,
     $                    RWORK )
         IF( NORMB.NE.ZERO )
     $      ERR = ERR / NORMB
      ELSE
         NORMX = PZLANGE( 'One-norm', NCOLS, NRHS, X, IX, JX, DESCX,
     $                    RWORK )
         IF( NORMX.NE.ZERO )
     $      ERR = ERR / NORMX
      END IF
*
      PZQRT17 = ERR / ( PDLAMCH( ICTXT, 'Epsilon' ) *
     $                  DBLE( MAX( M, N, NRHS ) ) )
*
      RETURN
*
*     End of PZQRT17
*
      END