1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
SUBROUTINE DESCINIT( DESC, M, N, MB, NB, IRSRC, ICSRC, ICTXT,
$ LLD, INFO )
*
* -- ScaLAPACK tools routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER ICSRC, ICTXT, INFO, IRSRC, LLD, M, MB, N, NB
* ..
* .. Array Arguments ..
INTEGER DESC( * )
* ..
*
* Purpose
* =======
*
* DESCINIT initializes the descriptor vector with the 8 input arguments
* M, N, MB, NB, IRSRC, ICSRC, ICTXT, LLD.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* DESC (output) INTEGER array of dimension DLEN_.
* The array descriptor of a distributed matrix to be set.
*
* M (global input) INTEGER
* The number of rows in the distributed matrix. M >= 0.
*
* N (global input) INTEGER
* The number of columns in the distributed matrix. N >= 0.
*
* MB (global input) INTEGER
* The blocking factor used to distribute the rows of the
* matrix. MB >= 1.
*
* NB (global input) INTEGER
* The blocking factor used to distribute the columns of the
* matrix. NB >= 1.
*
* IRSRC (global input) INTEGER
* The process row over which the first row of the matrix is
* distributed. 0 <= IRSRC < NPROW.
*
* ICSRC (global input) INTEGER
* The process column over which the first column of the
* matrix is distributed. 0 <= ICSRC < NPCOL.
*
* ICTXT (global input) INTEGER
* The BLACS context handle, indicating the global context of
* the operation on the matrix. The context itself is global.
*
* LLD (local input) INTEGER
* The leading dimension of the local array storing the local
* blocks of the distributed matrix. LLD >= MAX(1,LOCr(M)).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Note
* ====
*
* If the routine can recover from an erroneous input argument, it will
* return an acceptable descriptor vector. For example, if LLD = 0 on
* input, DESC(LLD_) will contain the smallest leading dimension
* required to store the specified M-by-N distributed matrix, INFO
* will be set -9 in that case.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER MYCOL, MYROW, NPCOL, NPROW
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, PXERBLA
* ..
* .. External Functions ..
INTEGER NUMROC
EXTERNAL NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( MB.LT.1 ) THEN
INFO = -4
ELSE IF( NB.LT.1 ) THEN
INFO = -5
ELSE IF( IRSRC.LT.0 .OR. IRSRC.GE.NPROW ) THEN
INFO = -6
ELSE IF( ICSRC.LT.0 .OR. ICSRC.GE.NPCOL ) THEN
INFO = -7
ELSE IF( NPROW.EQ.-1 ) THEN
INFO = -8
ELSE IF( LLD.LT.MAX( 1, NUMROC( M, MB, MYROW, IRSRC,
$ NPROW ) ) ) THEN
INFO = -9
END IF
*
IF( INFO.NE.0 )
$ CALL PXERBLA( ICTXT, 'DESCINIT', -INFO )
*
DESC( DTYPE_ ) = BLOCK_CYCLIC_2D
DESC( M_ ) = MAX( 0, M )
DESC( N_ ) = MAX( 0, N )
DESC( MB_ ) = MAX( 1, MB )
DESC( NB_ ) = MAX( 1, NB )
DESC( RSRC_ ) = MAX( 0, MIN( IRSRC, NPROW-1 ) )
DESC( CSRC_ ) = MAX( 0, MIN( ICSRC, NPCOL-1 ) )
DESC( CTXT_ ) = ICTXT
DESC( LLD_ ) = MAX( LLD, MAX( 1, NUMROC( DESC( M_ ), DESC( MB_ ),
$ MYROW, DESC( RSRC_ ), NPROW ) ) )
*
RETURN
*
* End DESCINIT
*
END
|