File: zmatadd.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (151 lines) | stat: -rw-r--r-- 4,338 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
      SUBROUTINE ZMATADD( M, N, ALPHA, A, LDA, BETA, C, LDC )
*
*  -- ScaLAPACK tools routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDC, M, N
      COMPLEX*16         ALPHA, BETA
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZMATADD performs the following local matrix-matrix operation
*
*               C := alpha * A + beta * C,
*
*  where alpha and beta are scalars, and A and C are m by n arrays.
*
*  Arguments
*  =========
*
*  M       (local input) INTEGER
*          The number of rows of the array A. M >= 0.
*
*  N       (local input) INTEGER
*          The number of columns of the array A. N >= 0.
*
*  ALPHA   (local input) COMPLEX*16
*          The scalar ALPHA.
*
*  A       (local input) COMPLEX*16
*          Array, dimension (LDA,*), the array A.
*
*  LDA     (local input) INTEGER
*          The leading dimension of the array A, LDA >= MAX(1, M)
*
*  BETA    (local input) COMPLEX*16
*          The scalar BETA.
*
*  C       (local input/local output) COMPLEX*16
*          Array, dimension (LDC,*), the array C.
*
*  LDC     (local input) INTEGER
*          The leading dimension of the array C, LDC >= MAX(1, M)
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                     ONE  = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible.
*
      IF( (M.EQ.0).OR.(N.EQ.0).OR.((ALPHA.EQ.ZERO).AND.(BETA.EQ.ONE)) )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( BETA.EQ.ZERO ) THEN
            IF( ALPHA.EQ.ZERO ) THEN
               DO 10 I = 1, M
                  C( I, 1 ) = ZERO
   10          CONTINUE
            ELSE
               DO 20  I = 1, M
                  C( I, 1 ) = ALPHA*A( I, 1 )
   20          CONTINUE
            END IF
         ELSE
            IF( ALPHA.EQ.ONE ) THEN
               IF( BETA.EQ.ONE ) THEN
                  DO 30 I = 1, M
                     C( I, 1 ) = A( I, 1 ) + C( I, 1 )
   30             CONTINUE
               ELSE
                  DO 40 I = 1, M
                     C( I, 1 ) = A( I, 1 ) + BETA*C( I, 1 )
   40             CONTINUE
               END IF
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 50 I = 1, M
                  C( I, 1 ) = ALPHA*A( I, 1 ) + C( I, 1 )
   50          CONTINUE
            ELSE
               DO 60 I = 1, M
                  C( I, 1 ) = ALPHA*A( I, 1 ) + BETA*C( I, 1 )
   60          CONTINUE
            END IF
         END IF
      ELSE
         IF( BETA.EQ.ZERO ) THEN
            IF( ALPHA.EQ.ZERO ) THEN
               DO 80 J = 1, N
                  DO 70 I = 1, M
                     C( I, J ) = ZERO
   70             CONTINUE
   80          CONTINUE
            ELSE
               DO 100 J = 1, N
                  DO 90 I = 1, M
                     C( I, J ) = ALPHA * A( I, J )
   90             CONTINUE
  100          CONTINUE
            END IF
         ELSE
            IF( ALPHA.EQ.ONE ) THEN
               IF( BETA.EQ.ONE ) THEN
                  DO 120 J = 1, N
                     DO 110 I = 1, M
                        C( I, J ) = A( I, J ) + C( I, J )
  110                CONTINUE
  120             CONTINUE
               ELSE
                  DO 140 J = 1, N
                     DO 130 I = 1, M
                        C( I, J ) = A( I, J ) + BETA * C( I, J )
  130                CONTINUE
  140             CONTINUE
               END IF
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 160 J = 1, N
                  DO 150 I = 1, M
                     C( I, J ) = C( I, J ) + ALPHA * A( I, J )
  150             CONTINUE
  160          CONTINUE
            ELSE
               DO 180 J = 1, N
                  DO 170 I = 1, M
                     C( I, J ) = ALPHA * A( I, J ) + BETA * C( I, J )
  170             CONTINUE
  180          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of ZMATADD
*
      END