1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#!/usr/bin/env python3
import collections
from collections import defaultdict
from fractions import Fraction
import time
import pyperf
def topoSort(roots, getParents):
"""Return a topological sorting of nodes in a graph.
roots - list of root nodes to search from
getParents - function which returns the parents of a given node
"""
results = []
visited = set()
# Use iterative version to avoid stack limits for large datasets
stack = [(node, 0) for node in roots]
while stack:
current, state = stack.pop()
if state == 0:
# before recursing
if current not in visited:
visited.add(current)
stack.append((current, 1))
stack.extend((parent, 0) for parent in getParents(current))
else:
# after recursing
assert(current in visited)
results.append(current)
return results
def getDamages(L, A, D, B, stab, te):
x = (2 * L) // 5
x = ((x + 2) * A * B) // (D * 50) + 2
if stab:
x += x // 2
x = int(x * te)
return [(x * z) // 255 for z in range(217, 256)]
def getCritDist(L, p, A1, A2, D1, D2, B, stab, te):
p = min(p, Fraction(1))
norm = getDamages(L, A1, D1, B, stab, te)
crit = getDamages(L * 2, A2, D2, B, stab, te)
dist = defaultdict(Fraction)
for mult, vals in zip([1 - p, p], [norm, crit]):
mult /= len(vals)
for x in vals:
dist[x] += mult
return dist
def plus12(x):
return x + x // 8
stats_t = collections.namedtuple('stats_t', ['atk', 'df', 'speed', 'spec'])
NOMODS = stats_t(0, 0, 0, 0)
fixeddata_t = collections.namedtuple(
'fixeddata_t', ['maxhp', 'stats', 'lvl', 'badges', 'basespeed'])
halfstate_t = collections.namedtuple(
'halfstate_t', ['fixed', 'hp', 'status', 'statmods', 'stats'])
def applyHPChange(hstate, change):
hp = min(hstate.fixed.maxhp, max(0, hstate.hp + change))
return hstate._replace(hp=hp)
def applyBadgeBoosts(badges, stats):
return stats_t(*[(plus12(x) if b else x) for x, b in zip(stats, badges)])
attack_stats_t = collections.namedtuple(
'attack_stats_t', ['power', 'isspec', 'stab', 'te', 'crit'])
attack_data = {
'Ember': attack_stats_t(40, True, True, 0.5, False),
'Dig': attack_stats_t(100, False, False, 1, False),
'Slash': attack_stats_t(70, False, False, 1, True),
'Water Gun': attack_stats_t(40, True, True, 2, False),
'Bubblebeam': attack_stats_t(65, True, True, 2, False),
}
def _applyActionSide1(state, act):
me, them, extra = state
if act == 'Super Potion':
me = applyHPChange(me, 50)
return {(me, them, extra): Fraction(1)}
mdata = attack_data[act]
aind = 3 if mdata.isspec else 0
dind = 3 if mdata.isspec else 1
pdiv = 64 if mdata.crit else 512
dmg_dist = getCritDist(me.fixed.lvl, Fraction(me.fixed.basespeed, pdiv),
me.stats[aind], me.fixed.stats[aind], them.stats[
dind], them.fixed.stats[dind],
mdata.power, mdata.stab, mdata.te)
dist = defaultdict(Fraction)
for dmg, p in dmg_dist.items():
them2 = applyHPChange(them, -dmg)
dist[me, them2, extra] += p
return dist
def _applyAction(state, side, act):
if side == 0:
return _applyActionSide1(state, act)
else:
me, them, extra = state
dist = _applyActionSide1((them, me, extra), act)
return {(k[1], k[0], k[2]): v for k, v in dist.items()}
class Battle(object):
def __init__(self):
self.successors = {}
self.min = defaultdict(float)
self.max = defaultdict(lambda: 1.0)
self.frozen = set()
self.win = 4, True
self.loss = 4, False
self.max[self.loss] = 0.0
self.min[self.win] = 1.0
self.frozen.update([self.win, self.loss])
def _getSuccessorsA(self, statep):
st, state = statep
for action in ['Dig', 'Super Potion']:
yield (1, state, action)
def _applyActionPair(self, state, side1, act1, side2, act2, dist, pmult):
for newstate, p in _applyAction(state, side1, act1).items():
if newstate[0].hp == 0:
newstatep = self.loss
elif newstate[1].hp == 0:
newstatep = self.win
else:
newstatep = 2, newstate, side2, act2
dist[newstatep] += p * pmult
def _getSuccessorsB(self, statep):
st, state, action = statep
dist = defaultdict(Fraction)
for eact, p in [('Water Gun', Fraction(64, 130)),
('Bubblebeam', Fraction(66, 130))]:
priority1 = state[0].stats.speed + \
10000 * (action == 'Super Potion')
priority2 = state[1].stats.speed + 10000 * (action == 'X Defend')
if priority1 > priority2:
self._applyActionPair(state, 0, action, 1, eact, dist, p)
elif priority1 < priority2:
self._applyActionPair(state, 1, eact, 0, action, dist, p)
else:
self._applyActionPair(state, 0, action, 1, eact, dist, p / 2)
self._applyActionPair(state, 1, eact, 0, action, dist, p / 2)
return {k: float(p) for k, p in dist.items() if p > 0}
def _getSuccessorsC(self, statep):
st, state, side, action = statep
dist = defaultdict(Fraction)
for newstate, p in _applyAction(state, side, action).items():
if newstate[0].hp == 0:
newstatep = self.loss
elif newstate[1].hp == 0:
newstatep = self.win
else:
newstatep = 0, newstate
dist[newstatep] += p
return {k: float(p) for k, p in dist.items() if p > 0}
def getSuccessors(self, statep):
try:
return self.successors[statep]
except KeyError:
st = statep[0]
if st == 0:
result = list(self._getSuccessorsA(statep))
else:
if st == 1:
dist = self._getSuccessorsB(statep)
elif st == 2:
dist = self._getSuccessorsC(statep)
result = sorted(dist.items(), key=lambda t: (-t[1], t[0]))
self.successors[statep] = result
return result
def getSuccessorsList(self, statep):
if statep[0] == 4:
return []
temp = self.getSuccessors(statep)
if statep[0] != 0:
temp = list(zip(*temp))[0] if temp else []
return temp
def evaluate(self, tolerance=0.15):
badges = 1, 0, 0, 0
starfixed = fixeddata_t(59, stats_t(40, 44, 56, 50), 11, NOMODS, 115)
starhalf = halfstate_t(starfixed, 59, 0, NOMODS,
stats_t(40, 44, 56, 50))
charfixed = fixeddata_t(63, stats_t(39, 34, 46, 38), 26, badges, 65)
charhalf = halfstate_t(charfixed, 63, 0, NOMODS, applyBadgeBoosts(
badges, stats_t(39, 34, 46, 38)))
initial_state = charhalf, starhalf, 0
initial_statep = 0, initial_state
dmin, dmax, frozen = self.min, self.max, self.frozen
stateps = topoSort([initial_statep], self.getSuccessorsList)
itercount = 0
while dmax[initial_statep] - dmin[initial_statep] > tolerance:
itercount += 1
for sp in stateps:
if sp in frozen:
continue
if sp[0] == 0:
# choice node
dmin[sp] = max(dmin[sp2] for sp2 in self.getSuccessors(sp))
dmax[sp] = max(dmax[sp2] for sp2 in self.getSuccessors(sp))
else:
dmin[sp] = sum(dmin[sp2] * p for sp2,
p in self.getSuccessors(sp))
dmax[sp] = sum(dmax[sp2] * p for sp2,
p in self.getSuccessors(sp))
if dmin[sp] >= dmax[sp]:
dmax[sp] = dmin[sp] = (dmin[sp] + dmax[sp]) / 2
frozen.add(sp)
return (dmax[initial_statep] + dmin[initial_statep]) / 2
def bench_mdp(loops):
expected = 0.89873589887
max_diff = 1e-6
range_it = range(loops)
# t0 = pyperf.perf_counter()
for _ in range_it:
result = Battle().evaluate(0.192)
# dt = pyperf.perf_counter() - t0
if abs(result - expected) > max_diff:
raise Exception("invalid result: got %s, expected %s "
"(diff: %s, max diff: %s)"
% (result, expected, result - expected, max_diff))
# return dt
if __name__ == "__main__":
runner = pyperf.Runner()
runner.metadata['description'] = "MDP benchmark"
start_p = time.perf_counter()
# runner.bench_time_func('mdp', bench_mdp)
bench_mdp(5)
stop_p = time.perf_counter()
print("Time elapsed: ", stop_p - start_p)
|