File: bm_pyflate.py

package info (click to toggle)
scalene 1.5.51-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,528 kB
  • sloc: cpp: 22,930; python: 13,403; javascript: 11,769; ansic: 817; makefile: 196; sh: 45
file content (677 lines) | stat: -rwxr-xr-x 20,545 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#!/usr/bin/env python
"""
Copyright 2006--2007-01-21 Paul Sladen
http://www.paul.sladen.org/projects/compression/

You may use and distribute this code under any DFSG-compatible
license (eg. BSD, GNU GPLv2).

Stand-alone pure-Python DEFLATE (gzip) and bzip2 decoder/decompressor.
This is probably most useful for research purposes/index building;  there
is certainly some room for improvement in the Huffman bit-matcher.

With the as-written implementation, there was a known bug in BWT
decoding to do with repeated strings.  This has been worked around;
see 'bwt_reverse()'.  Correct output is produced in all test cases
but ideally the problem would be found...
"""

import hashlib
import os
from collections import deque

import pyperf
import six
from six.moves import xrange


class BitfieldBase(object):

    def __init__(self, x):
        if isinstance(x, BitfieldBase):
            self.f = x.f
            self.bits = x.bits
            self.bitfield = x.bitfield
            self.count = x.bitfield
        else:
            self.f = x
            self.bits = 0
            self.bitfield = 0x0
            self.count = 0

    def _read(self, n):
        s = self.f.read(n)
        if not s:
            raise "Length Error"
        self.count += len(s)
        return s

    def needbits(self, n):
        while self.bits < n:
            self._more()

    def _mask(self, n):
        return (1 << n) - 1

    def toskip(self):
        return self.bits & 0x7

    def align(self):
        self.readbits(self.toskip())

    def dropbits(self, n=8):
        while n >= self.bits and n > 7:
            n -= self.bits
            self.bits = 0
            n -= len(self.f._read(n >> 3)) << 3
        if n:
            self.readbits(n)
        # No return value

    def dropbytes(self, n=1):
        self.dropbits(n << 3)

    def tell(self):
        return self.count - ((self.bits + 7) >> 3), 7 - ((self.bits - 1) & 0x7)

    def tellbits(self):
        bytes, bits = self.tell()
        return (bytes << 3) + bits


class Bitfield(BitfieldBase):

    def _more(self):
        c = self._read(1)
        self.bitfield += ord(c) << self.bits
        self.bits += 8

    def snoopbits(self, n=8):
        if n > self.bits:
            self.needbits(n)
        return self.bitfield & self._mask(n)

    def readbits(self, n=8):
        if n > self.bits:
            self.needbits(n)
        r = self.bitfield & self._mask(n)
        self.bits -= n
        self.bitfield >>= n
        return r


class RBitfield(BitfieldBase):

    def _more(self):
        c = self._read(1)
        self.bitfield <<= 8
        self.bitfield += ord(c)
        self.bits += 8

    def snoopbits(self, n=8):
        if n > self.bits:
            self.needbits(n)
        return (self.bitfield >> (self.bits - n)) & self._mask(n)

    def readbits(self, n=8):
        if n > self.bits:
            self.needbits(n)
        r = (self.bitfield >> (self.bits - n)) & self._mask(n)
        self.bits -= n
        self.bitfield &= ~(self._mask(n) << self.bits)
        return r


def printbits(v, n):
    o = ''
    for i in range(n):
        if v & 1:
            o = '1' + o
        else:
            o = '0' + o
        v >>= 1
    return o


class HuffmanLength(object):

    def __init__(self, code, bits=0):
        self.code = code
        self.bits = bits
        self.symbol = None
        self.reverse_symbol = None

    def __repr__(self):
        return repr((self.code, self.bits, self.symbol, self.reverse_symbol))

    @staticmethod
    def _sort_func(obj):
        return (obj.bits, obj.code)


def reverse_bits(v, n):
    a = 1 << 0
    b = 1 << (n - 1)
    z = 0
    for i in range(n - 1, -1, -2):
        z |= (v >> i) & a
        z |= (v << i) & b
        a <<= 1
        b >>= 1
    return z


def reverse_bytes(v, n):
    a = 0xff << 0
    b = 0xff << (n - 8)
    z = 0
    for i in range(n - 8, -8, -16):
        z |= (v >> i) & a
        z |= (v << i) & b
        a <<= 8
        b >>= 8
    return z


class HuffmanTable(object):

    def __init__(self, bootstrap):
        l = []
        start, bits = bootstrap[0]
        for finish, endbits in bootstrap[1:]:
            if bits:
                for code in range(start, finish):
                    l.append(HuffmanLength(code, bits))
            start, bits = finish, endbits
            if endbits == -1:
                break
        l.sort(key=HuffmanLength._sort_func)
        self.table = l

    def populate_huffman_symbols(self):
        bits, symbol = -1, -1
        for x in self.table:
            symbol += 1
            if x.bits != bits:
                symbol <<= (x.bits - bits)
                bits = x.bits
            x.symbol = symbol
            x.reverse_symbol = reverse_bits(symbol, bits)

    def tables_by_bits(self):
        d = {}
        for x in self.table:
            try:
                d[x.bits].append(x)
            except:   # noqa
                d[x.bits] = [x]

    def min_max_bits(self):
        self.min_bits, self.max_bits = 16, -1
        for x in self.table:
            if x.bits < self.min_bits:
                self.min_bits = x.bits
            if x.bits > self.max_bits:
                self.max_bits = x.bits

    def _find_symbol(self, bits, symbol, table):
        for h in table:
            if h.bits == bits and h.reverse_symbol == symbol:
                return h.code
        return -1

    def find_next_symbol(self, field, reversed=True):
        cached_length = -1
        cached = None
        for x in self.table:
            if cached_length != x.bits:
                cached = field.snoopbits(x.bits)
                cached_length = x.bits
            if (reversed and x.reverse_symbol == cached) or (not reversed and x.symbol == cached):
                field.readbits(x.bits)
                return x.code
        raise Exception("unfound symbol, even after end of table @%r"
                        % field.tell())

        for bits in range(self.min_bits, self.max_bits + 1):
            r = self._find_symbol(bits, field.snoopbits(bits), self.table)
            if 0 <= r:
                field.readbits(bits)
                return r
            elif bits == self.max_bits:
                raise "unfound symbol, even after max_bits"


class OrderedHuffmanTable(HuffmanTable):

    def __init__(self, lengths):
        l = len(lengths)
        z = list(zip(range(l), lengths)) + [(l, -1)]
        HuffmanTable.__init__(self, z)


def code_length_orders(i):
    return (16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3,
            13, 2, 14, 1, 15)[i]


def distance_base(i):
    return (1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
            257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193,
            12289, 16385, 24577)[i]


def length_base(i):
    return (3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35,
            43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258)[i - 257]


def extra_distance_bits(n):
    if 0 <= n <= 1:
        return 0
    elif 2 <= n <= 29:
        return (n >> 1) - 1
    else:
        raise "illegal distance code"


def extra_length_bits(n):
    if 257 <= n <= 260 or n == 285:
        return 0
    elif 261 <= n <= 284:
        return ((n - 257) >> 2) - 1
    else:
        raise "illegal length code"


def move_to_front(l, c):
    l.insert(0, l.pop(c))
    # EDB WAS
    #    l[:] = l[c:c + 1] + l[0:c] + l[c + 1:]


def bwt_transform(L):
    # Semi-inefficient way to get the character counts
    if six.PY3:
        F = bytes(sorted(L))
    else:
        F = b''.join(sorted(L))
    base = []
    for i in range(256):
        base.append(F.find(six.int2byte(i)))

    pointers = [-1] * len(L)
    for i, symbol in enumerate(six.iterbytes(L)):
        pointers[base[symbol]] = i
        base[symbol] += 1
    return pointers


def bwt_reverse(L, end):
    out = deque([])
    if len(L):
        T = bwt_transform(L)

        # STRAGENESS WARNING: There was a bug somewhere here in that
        # if the output of the BWT resolves to a perfect copy of N
        # identical strings (think exact multiples of 255 'X' here),
        # then a loop is formed.  When decoded, the output string would
        # be cut off after the first loop, typically '\0\0\0\0\xfb'.
        # The previous loop construct was:
        #
        #  next = T[end]
        #  while next != end:
        #      out += L[next]
        #      next = T[next]
        #  out += L[next]
        #
        # For the moment, I've instead replaced it with a check to see
        # if there has been enough output generated.  I didn't figured
        # out where the off-by-one-ism is yet---that actually produced
        # the cyclic loop.

        for i in xrange(len(L)):
            end = T[end]
            out.append(L[end])

    if six.PY3:
        return bytes(out)
    else:
        return b"".join(out)


def compute_used(b):
    huffman_used_map = b.readbits(16)
    map_mask = 1 << 15
    used = deque([])
    while map_mask > 0:
        if huffman_used_map & map_mask:
            huffman_used_bitmap = b.readbits(16)
            bit_mask = 1 << 15
            while bit_mask > 0:
                if huffman_used_bitmap & bit_mask:
                    pass
                used += [bool(huffman_used_bitmap & bit_mask)]
                bit_mask >>= 1
        else:
            used += [False] * 16
        map_mask >>= 1
    return used


def compute_selectors_list(b, huffman_groups):
    selectors_used = b.readbits(15)
    mtf = list(range(huffman_groups))
    selectors_list = deque([])
    for i in range(selectors_used):
        # zero-terminated bit runs (0..62) of MTF'ed huffman table
        c = 0
        while b.readbits(1):
            c += 1
            if c >= huffman_groups:
                raise "Bzip2 chosen selector greater than number of groups (max 6)"
        if c >= 0:
            mtf.insert(0, mtf.pop(c))
            # EDB WAS
            # move_to_front(mtf, c)
        selectors_list.append(mtf[0])
    return selectors_list


def compute_tables(b, huffman_groups, symbols_in_use):
    groups_lengths = deque([])
    for j in range(huffman_groups):
        length = b.readbits(5)
        lengths = []
        for i in range(symbols_in_use):
            if not 0 <= length <= 20:
                raise "Bzip2 Huffman length code outside range 0..20"
            while b.readbits(1):
                length -= (b.readbits(1) * 2) - 1
            lengths += [length]
        groups_lengths += [lengths]

    tables = deque([])
    for g in groups_lengths:
        codes = OrderedHuffmanTable(g)
        codes.populate_huffman_symbols()
        codes.min_max_bits()
        tables.append(codes)
    return tables


def decode_huffman_block(b, out):
    randomised = b.readbits(1)
    if randomised:
        raise "Bzip2 randomised support not implemented"
    pointer = b.readbits(24)
    used = compute_used(b)

    huffman_groups = b.readbits(3)
    if not 2 <= huffman_groups <= 6:
        raise Exception("Bzip2: Number of Huffman groups not in range 2..6")

    selectors_list = compute_selectors_list(b, huffman_groups)
    symbols_in_use = sum(used) + 2  # remember RUN[AB] RLE symbols
    tables = compute_tables(b, huffman_groups, symbols_in_use)

    favourites = [six.int2byte(i) for i, x in enumerate(used) if x]

    selector_pointer = 0
    decoded = 0
    # Main Huffman loop
    repeat = repeat_power = 0
    buffer = deque([])
    t = None
    while True:
        decoded -= 1
        if decoded <= 0:
            decoded = 50  # Huffman table re-evaluate/switch length
            if selector_pointer <= len(selectors_list):
                t = tables[selectors_list[selector_pointer]]
                selector_pointer += 1

        r = t.find_next_symbol(b, False)
        if 0 <= r <= 1:
            if repeat == 0:
                repeat_power = 1
            repeat += repeat_power << r
            repeat_power <<= 1
            continue
        elif repeat > 0:
            # Remember kids: If there is only one repeated
            # real symbol, it is encoded with *zero* Huffman
            # bits and not output... so buffer[-1] doesn't work.
            buffer.append(favourites[0] * repeat)
            repeat = 0
        if r == symbols_in_use - 1:
            break
        else:
            o = favourites[r - 1]
            favourites.insert(0, favourites.pop(r - 1))
            # EDB was
            # move_to_front(favourites, r - 1)
            buffer.append(o)
            pass

    nt = nearly_there = bwt_reverse(b"".join(buffer), pointer)
    i = 0
    # Pointless/irritating run-length encoding step
    while i < len(nearly_there):
        if i < len(nearly_there) - 4 and nt[i] == nt[i + 1] == nt[i + 2] == nt[i + 3]:
            out.append(nearly_there[i:i + 1] * (ord(nearly_there[i + 4:i + 5]) + 4))
            i += 5
        else:
            out.append(nearly_there[i:i + 1])
            i += 1

# Sixteen bits of magic have been removed by the time we start decoding


def bzip2_main(input):
    b = RBitfield(input)

    method = b.readbits(8)
    if method != ord('h'):
        raise Exception(
            "Unknown (not type 'h'uffman Bzip2) compression method")

    blocksize = b.readbits(8)
    if ord('1') <= blocksize <= ord('9'):
        blocksize = blocksize - ord('0')
    else:
        raise Exception("Unknown (not size '0'-'9') Bzip2 blocksize")

    out = deque([])
    while True:
        blocktype = b.readbits(48)
        b.readbits(32)   # crc
        if blocktype == 0x314159265359:  # (pi)
            decode_huffman_block(b, out)
        elif blocktype == 0x177245385090:  # sqrt(pi)
            b.align()
            break
        else:
            raise Exception("Illegal Bzip2 blocktype")
    return b''.join(out)


# Sixteen bits of magic have been removed by the time we start decoding
def gzip_main(field):
    b = Bitfield(field)
    method = b.readbits(8)
    if method != 8:
        raise Exception("Unknown (not type eight DEFLATE) compression method")

    # Use flags, drop modification time, extra flags and OS creator type.
    flags = b.readbits(8)
    b.readbits(32)   # mtime
    b.readbits(8)    # extra_flags
    b.readbits(8)    # os_type

    if flags & 0x04:  # structured GZ_FEXTRA miscellaneous data
        xlen = b.readbits(16)
        b.dropbytes(xlen)
    while flags & 0x08:  # original GZ_FNAME filename
        if not b.readbits(8):
            break
    while flags & 0x10:  # human readable GZ_FCOMMENT
        if not b.readbits(8):
            break
    if flags & 0x02:  # header-only GZ_FHCRC checksum
        b.readbits(16)

    out = deque([])
    while True:
        lastbit = b.readbits(1)
        blocktype = b.readbits(2)

        if blocktype == 0:
            b.align()
            length = b.readbits(16)
            if length & b.readbits(16):
                raise Exception("stored block lengths do not match each other")
            for i in range(length):
                out.append(six.int2byte(b.readbits(8)))

        elif blocktype == 1 or blocktype == 2:  # Huffman
            main_literals, main_distances = None, None

            if blocktype == 1:  # Static Huffman
                static_huffman_bootstrap = [
                    (0, 8), (144, 9), (256, 7), (280, 8), (288, -1)]
                static_huffman_lengths_bootstrap = [(0, 5), (32, -1)]
                main_literals = HuffmanTable(static_huffman_bootstrap)
                main_distances = HuffmanTable(static_huffman_lengths_bootstrap)

            elif blocktype == 2:  # Dynamic Huffman
                literals = b.readbits(5) + 257
                distances = b.readbits(5) + 1
                code_lengths_length = b.readbits(4) + 4

                l = [0] * 19
                for i in range(code_lengths_length):
                    l[code_length_orders(i)] = b.readbits(3)

                dynamic_codes = OrderedHuffmanTable(l)
                dynamic_codes.populate_huffman_symbols()
                dynamic_codes.min_max_bits()

                # Decode the code_lengths for both tables at once,
                # then split the list later

                code_lengths = []
                n = 0
                while n < (literals + distances):
                    r = dynamic_codes.find_next_symbol(b)
                    if 0 <= r <= 15:  # literal bitlength for this code
                        count = 1
                        what = r
                    elif r == 16:  # repeat last code
                        count = 3 + b.readbits(2)
                        # Is this supposed to default to '0' if in the zeroth
                        # position?
                        what = code_lengths[-1]
                    elif r == 17:  # repeat zero
                        count = 3 + b.readbits(3)
                        what = 0
                    elif r == 18:  # repeat zero lots
                        count = 11 + b.readbits(7)
                        what = 0
                    else:
                        raise Exception(
                            "next code length is outside of the range 0 <= r <= 18")
                    code_lengths += [what] * count
                    n += count

                main_literals = OrderedHuffmanTable(code_lengths[:literals])
                main_distances = OrderedHuffmanTable(code_lengths[literals:])

            # Common path for both Static and Dynamic Huffman decode now

            main_literals.populate_huffman_symbols()
            main_distances.populate_huffman_symbols()

            main_literals.min_max_bits()
            main_distances.min_max_bits()

            literal_count = 0
            while True:
                r = main_literals.find_next_symbol(b)
                if 0 <= r <= 255:
                    literal_count += 1
                    out.append(six.int2byte(r))
                elif r == 256:
                    if literal_count > 0:
                        literal_count = 0
                    break
                elif 257 <= r <= 285:  # dictionary lookup
                    if literal_count > 0:
                        literal_count = 0
                    length_extra = b.readbits(extra_length_bits(r))
                    length = length_base(r) + length_extra

                    r1 = main_distances.find_next_symbol(b)
                    if 0 <= r1 <= 29:
                        distance = distance_base(
                            r1) + b.readbits(extra_distance_bits(r1))
                        while length > distance:
                            out += out[-distance:]
                            length -= distance
                        if length == distance:
                            out += out[-distance:]
                        else:
                            out += out[-distance:length - distance]
                    elif 30 <= r1 <= 31:
                        raise Exception("illegal unused distance symbol "
                                        "in use @%r" % b.tell())
                elif 286 <= r <= 287:
                    raise Exception("illegal unused literal/length symbol "
                                    "in use @%r" % b.tell())
        elif blocktype == 3:
            raise Exception("illegal unused blocktype in use @%r" % b.tell())

        if lastbit:
            break

    b.align()
    b.readbits(32)   # crc
    b.readbits(32)   # final_length
    return "".join(out)


def bench_pyflake(loops, filename):
    input_fp = open(filename, 'rb')
    range_it = xrange(loops)
    t0 = pyperf.perf_counter()

    for _ in range_it:
        input_fp.seek(0)
        field = RBitfield(input_fp)

        magic = field.readbits(16)
        if magic == 0x1f8b:  # GZip
            out = gzip_main(field)
        elif magic == 0x425a:  # BZip2
            out = bzip2_main(field)
        else:
            raise Exception("Unknown file magic %x, not a gzip/bzip2 file"
                            % hex(magic))

    dt = pyperf.perf_counter() - t0
    input_fp.close()

    if hashlib.md5(out).hexdigest() != "afa004a630fe072901b1d9628b960974":
        raise Exception("MD5 checksum mismatch")

    return dt


if __name__ == '__main__':
    runner = pyperf.Runner()
    runner.metadata['description'] = "Pyflate benchmark"

    filename = os.path.join(#os.path.dirname(__file__),
                            "test", "original", "data", "interpreter.tar.bz2")
    bench_pyflake(1,filename)
#    runner.bench_time_func('pyflate', bench_pyflake, filename)