1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
from array import array
import math
import pyperf
from six.moves import xrange
class Array2D(object):
def __init__(self, w, h, data=None):
self.width = w
self.height = h
self.data = array('d', [0]) * (w * h)
if data is not None:
self.setup(data)
def _idx(self, x, y):
return y * self.width + x
# EDB: return without error checking
if 0 <= x < self.width and 0 <= y < self.height:
return y * self.width + x
raise IndexError
def __getitem__(self, x_y):
(x, y) = x_y
return self.data[self._idx(x, y)]
def __setitem__(self, x_y, val):
(x, y) = x_y
self.data[self._idx(x, y)] = val
def setup(self, data):
for y in xrange(self.height):
for x in xrange(self.width):
self[x, y] = data[y][x]
return self
def indexes(self):
for y in xrange(self.height):
for x in xrange(self.width):
yield x, y
def copy_data_from(self, other):
self.data[:] = other.data[:]
class Random(object):
MDIG = 32
ONE = 1
m1 = (ONE << (MDIG - 2)) + ((ONE << (MDIG - 2)) - ONE)
m2 = ONE << MDIG // 2
dm1 = 1.0 / float(m1)
def __init__(self, seed):
self.initialize(seed)
self.left = 0.0
self.right = 1.0
self.width = 1.0
self.haveRange = False
def initialize(self, seed):
self.seed = seed
seed = abs(seed)
jseed = min(seed, self.m1)
if (jseed % 2 == 0):
jseed -= 1
k0 = 9069 % self.m2
k1 = 9069 / self.m2
j0 = jseed % self.m2
j1 = jseed / self.m2
self.m = array('d', [0]) * 17
for iloop in xrange(17):
jseed = j0 * k0
j1 = (jseed / self.m2 + j0 * k1 + j1 * k0) % (self.m2 / 2)
j0 = jseed % self.m2
self.m[iloop] = j0 + self.m2 * j1
self.i = 4
self.j = 16
def nextDouble(self):
I, J, m = self.i, self.j, self.m
k = m[I] - m[J]
if (k < 0):
k += self.m1
self.m[J] = k
if (I == 0):
I = 16
else:
I -= 1
self.i = I
if (J == 0):
J = 16
else:
J -= 1
self.j = J
if (self.haveRange):
return self.left + self.dm1 * float(k) * self.width
else:
return self.dm1 * float(k)
def RandomMatrix(self, a):
for x, y in a.indexes():
a[x, y] = self.nextDouble()
return a
def RandomVector(self, n):
return array('d', [self.nextDouble() for i in xrange(n)])
def copy_vector(vec):
# Copy a vector created by Random.RandomVector()
vec2 = array('d')
vec2[:] = vec[:]
return vec2
class ArrayList(Array2D):
def __init__(self, w, h, data=None):
self.width = w
self.height = h
self.data = [array('d', [0]) * w for y in xrange(h)]
if data is not None:
self.setup(data)
def __getitem__(self, idx):
if isinstance(idx, tuple):
return self.data[idx[1]][idx[0]]
else:
return self.data[idx]
def __setitem__(self, idx, val):
if isinstance(idx, tuple):
self.data[idx[1]][idx[0]] = val
else:
self.data[idx] = val
def copy_data_from(self, other):
for l1, l2 in zip(self.data, other.data):
l1[:] = l2
def SOR_execute(omega, G, cycles, Array):
for p in xrange(cycles):
for y in xrange(1, G.height - 1):
for x in xrange(1, G.width - 1):
G[x, y] = (omega * 0.25 * (G[x, y - 1] + G[x, y + 1] + G[x - 1, y]
+ G[x + 1, y])
+ (1.0 - omega) * G[x, y])
def bench_SOR(loops, n, cycles, Array):
range_it = xrange(loops)
t0 = pyperf.perf_counter()
for _ in range_it:
G = Array(n, n)
SOR_execute(1.25, G, cycles, Array)
return pyperf.perf_counter() - t0
def SparseCompRow_matmult(M, y, val, row, col, x, num_iterations):
range_it = xrange(num_iterations)
t0 = pyperf.perf_counter()
for _ in range_it:
for r in xrange(M):
sa = 0.0
for i in xrange(row[r], row[r + 1]):
sa += x[col[i]] * val[i]
y[r] = sa
return pyperf.perf_counter() - t0
def bench_SparseMatMult(cycles, N, nz):
x = array('d', [0]) * N
y = array('d', [0]) * N
nr = nz // N
anz = nr * N
val = array('d', [0]) * anz
col = array('i', [0]) * nz
row = array('i', [0]) * (N + 1)
row[0] = 0
for r in xrange(N):
rowr = row[r]
step = r // nr
row[r + 1] = rowr + nr
if step < 1:
step = 1
for i in xrange(nr):
col[rowr + i] = i * step
return SparseCompRow_matmult(N, y, val, row, col, x, cycles)
def MonteCarlo(Num_samples):
rnd = Random(113)
under_curve = 0
for count in xrange(Num_samples):
x = rnd.nextDouble()
y = rnd.nextDouble()
if x * x + y * y <= 1.0:
under_curve += 1
return float(under_curve) / Num_samples * 4.0
def bench_MonteCarlo(loops, Num_samples):
range_it = xrange(loops)
t0 = pyperf.perf_counter()
for _ in range_it:
MonteCarlo(Num_samples)
return pyperf.perf_counter() - t0
def LU_factor(A, pivot):
M, N = A.height, A.width
minMN = min(M, N)
for j in xrange(minMN):
jp = j
t = abs(A[j][j])
for i in xrange(j + 1, M):
ab = abs(A[i][j])
if ab > t:
jp = i
t = ab
pivot[j] = jp
if A[jp][j] == 0:
raise Exception("factorization failed because of zero pivot")
if jp != j:
A[j], A[jp] = A[jp], A[j]
if j < M - 1:
recp = 1.0 / A[j][j]
for k in xrange(j + 1, M):
A[k][j] *= recp
if j < minMN - 1:
for ii in xrange(j + 1, M):
for jj in xrange(j + 1, N):
A[ii][jj] -= A[ii][j] * A[j][jj]
def LU(lu, A, pivot):
lu.copy_data_from(A)
LU_factor(lu, pivot)
def bench_LU(cycles, N):
rnd = Random(7)
A = rnd.RandomMatrix(ArrayList(N, N))
lu = ArrayList(N, N)
pivot = array('i', [0]) * N
range_it = xrange(cycles)
t0 = pyperf.perf_counter()
for _ in range_it:
LU(lu, A, pivot)
return pyperf.perf_counter() - t0
def int_log2(n):
k = 1
log = 0
while k < n:
k *= 2
log += 1
if n != 1 << log:
raise Exception("FFT: Data length is not a power of 2: %s" % n)
return log
def FFT_num_flops(N):
return (5.0 * N - 2) * int_log2(N) + 2 * (N + 1)
def FFT_transform_internal(N, data, direction):
n = N // 2
bit = 0
dual = 1
if n == 1:
return
logn = int_log2(n)
if N == 0:
return
FFT_bitreverse(N, data)
# apply fft recursion
# this loop executed int_log2(N) times
bit = 0
while bit < logn:
w_real = 1.0
w_imag = 0.0
theta = 2.0 * direction * math.pi / (2.0 * float(dual))
s = math.sin(theta)
t = math.sin(theta / 2.0)
s2 = 2.0 * t * t
for b in range(0, n, 2 * dual):
i = 2 * b
j = 2 * (b + dual)
wd_real = data[j]
wd_imag = data[j + 1]
data[j] = data[i] - wd_real
data[j + 1] = data[i + 1] - wd_imag
data[i] += wd_real
data[i + 1] += wd_imag
for a in xrange(1, dual):
tmp_real = w_real - s * w_imag - s2 * w_real
tmp_imag = w_imag + s * w_real - s2 * w_imag
w_real = tmp_real
w_imag = tmp_imag
for b in range(0, n, 2 * dual):
i = 2 * (b + a)
j = 2 * (b + a + dual)
z1_real = data[j]
z1_imag = data[j + 1]
wd_real = w_real * z1_real - w_imag * z1_imag
wd_imag = w_real * z1_imag + w_imag * z1_real
data[j] = data[i] - wd_real
data[j + 1] = data[i + 1] - wd_imag
data[i] += wd_real
data[i + 1] += wd_imag
bit += 1
dual *= 2
def FFT_bitreverse(N, data):
n = N // 2
nm1 = n - 1
j = 0
for i in range(nm1):
ii = i << 1
jj = j << 1
k = n >> 1
if i < j:
tmp_real = data[ii]
tmp_imag = data[ii + 1]
data[ii] = data[jj]
data[ii + 1] = data[jj + 1]
data[jj] = tmp_real
data[jj + 1] = tmp_imag
while k <= j:
j -= k
k >>= 1
j += k
def FFT_transform(N, data):
FFT_transform_internal(N, data, -1)
def FFT_inverse(N, data):
n = N / 2
norm = 0.0
FFT_transform_internal(N, data, +1)
norm = 1 / float(n)
for i in xrange(N):
data[i] *= norm
def bench_FFT(loops, N, cycles):
twoN = 2 * N
init_vec = Random(7).RandomVector(twoN)
range_it = xrange(loops)
t0 = pyperf.perf_counter()
for _ in range_it:
x = copy_vector(init_vec)
for i in xrange(cycles):
FFT_transform(twoN, x)
FFT_inverse(twoN, x)
return pyperf.perf_counter() - t0
def add_cmdline_args(cmd, args):
if args.benchmark:
cmd.append(args.benchmark)
BENCHMARKS = {
# function name => arguments
'sor': (bench_SOR, 100, 10, Array2D),
'sparse_mat_mult': (bench_SparseMatMult, 1000, 50 * 1000),
'monte_carlo': (bench_MonteCarlo, 100 * 1000,),
'lu': (bench_LU, 100,),
'fft': (bench_FFT, 1024, 50),
}
if __name__ == "__main__":
runner = pyperf.Runner(add_cmdline_args=add_cmdline_args)
runner.argparser.add_argument("benchmark", nargs='?',
choices=sorted(BENCHMARKS))
args = runner.parse_args()
if args.benchmark:
benchmarks = (args.benchmark,)
else:
benchmarks = sorted(BENCHMARKS)
for bench in benchmarks:
name = 'scimark_%s' % bench
print(name)
args = BENCHMARKS[bench]
(args[0])(10, *args[1:])
# runner.bench_time_func(name, *args)
|