File: bm_scimark.py

package info (click to toggle)
scalene 1.5.51-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,528 kB
  • sloc: cpp: 22,930; python: 13,403; javascript: 11,769; ansic: 817; makefile: 196; sh: 45
file content (420 lines) | stat: -rw-r--r-- 10,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
from array import array
import math

import pyperf
from six.moves import xrange


class Array2D(object):

    def __init__(self, w, h, data=None):
        self.width = w
        self.height = h
        self.data = array('d', [0]) * (w * h)
        if data is not None:
            self.setup(data)

    def _idx(self, x, y):
        return y * self.width + x
        # EDB: return without error checking
        if 0 <= x < self.width and 0 <= y < self.height:
            return y * self.width + x
        raise IndexError

    def __getitem__(self, x_y):
        (x, y) = x_y
        return self.data[self._idx(x, y)]

    def __setitem__(self, x_y, val):
        (x, y) = x_y
        self.data[self._idx(x, y)] = val

    def setup(self, data):
        for y in xrange(self.height):
            for x in xrange(self.width):
                self[x, y] = data[y][x]
        return self

    def indexes(self):
        for y in xrange(self.height):
            for x in xrange(self.width):
                yield x, y

    def copy_data_from(self, other):
        self.data[:] = other.data[:]


class Random(object):
    MDIG = 32
    ONE = 1
    m1 = (ONE << (MDIG - 2)) + ((ONE << (MDIG - 2)) - ONE)
    m2 = ONE << MDIG // 2
    dm1 = 1.0 / float(m1)

    def __init__(self, seed):
        self.initialize(seed)
        self.left = 0.0
        self.right = 1.0
        self.width = 1.0
        self.haveRange = False

    def initialize(self, seed):

        self.seed = seed
        seed = abs(seed)
        jseed = min(seed, self.m1)
        if (jseed % 2 == 0):
            jseed -= 1
        k0 = 9069 % self.m2
        k1 = 9069 / self.m2
        j0 = jseed % self.m2
        j1 = jseed / self.m2
        self.m = array('d', [0]) * 17
        for iloop in xrange(17):
            jseed = j0 * k0
            j1 = (jseed / self.m2 + j0 * k1 + j1 * k0) % (self.m2 / 2)
            j0 = jseed % self.m2
            self.m[iloop] = j0 + self.m2 * j1
        self.i = 4
        self.j = 16

    def nextDouble(self):
        I, J, m = self.i, self.j, self.m
        k = m[I] - m[J]
        if (k < 0):
            k += self.m1
        self.m[J] = k

        if (I == 0):
            I = 16
        else:
            I -= 1
        self.i = I

        if (J == 0):
            J = 16
        else:
            J -= 1
        self.j = J

        if (self.haveRange):
            return self.left + self.dm1 * float(k) * self.width
        else:
            return self.dm1 * float(k)

    def RandomMatrix(self, a):
        for x, y in a.indexes():
            a[x, y] = self.nextDouble()
        return a

    def RandomVector(self, n):
        return array('d', [self.nextDouble() for i in xrange(n)])


def copy_vector(vec):
    # Copy a vector created by Random.RandomVector()
    vec2 = array('d')
    vec2[:] = vec[:]
    return vec2


class ArrayList(Array2D):

    def __init__(self, w, h, data=None):
        self.width = w
        self.height = h
        self.data = [array('d', [0]) * w for y in xrange(h)]
        if data is not None:
            self.setup(data)

    def __getitem__(self, idx):
        if isinstance(idx, tuple):
            return self.data[idx[1]][idx[0]]
        else:
            return self.data[idx]

    def __setitem__(self, idx, val):
        if isinstance(idx, tuple):
            self.data[idx[1]][idx[0]] = val
        else:
            self.data[idx] = val

    def copy_data_from(self, other):
        for l1, l2 in zip(self.data, other.data):
            l1[:] = l2


def SOR_execute(omega, G, cycles, Array):
    for p in xrange(cycles):
        for y in xrange(1, G.height - 1):
            for x in xrange(1, G.width - 1):
                G[x, y] = (omega * 0.25 * (G[x, y - 1] + G[x, y + 1] + G[x - 1, y]
                                           + G[x + 1, y])
                           + (1.0 - omega) * G[x, y])


def bench_SOR(loops, n, cycles, Array):
    range_it = xrange(loops)
    t0 = pyperf.perf_counter()

    for _ in range_it:
        G = Array(n, n)
        SOR_execute(1.25, G, cycles, Array)

    return pyperf.perf_counter() - t0


def SparseCompRow_matmult(M, y, val, row, col, x, num_iterations):
    range_it = xrange(num_iterations)
    t0 = pyperf.perf_counter()

    for _ in range_it:
        for r in xrange(M):
            sa = 0.0
            for i in xrange(row[r], row[r + 1]):
                sa += x[col[i]] * val[i]
            y[r] = sa

    return pyperf.perf_counter() - t0


def bench_SparseMatMult(cycles, N, nz):
    x = array('d', [0]) * N
    y = array('d', [0]) * N

    nr = nz // N
    anz = nr * N
    val = array('d', [0]) * anz
    col = array('i', [0]) * nz
    row = array('i', [0]) * (N + 1)

    row[0] = 0
    for r in xrange(N):
        rowr = row[r]
        step = r // nr
        row[r + 1] = rowr + nr
        if step < 1:
            step = 1
        for i in xrange(nr):
            col[rowr + i] = i * step

    return SparseCompRow_matmult(N, y, val, row, col, x, cycles)


def MonteCarlo(Num_samples):
    rnd = Random(113)
    under_curve = 0
    for count in xrange(Num_samples):
        x = rnd.nextDouble()
        y = rnd.nextDouble()
        if x * x + y * y <= 1.0:
            under_curve += 1
    return float(under_curve) / Num_samples * 4.0


def bench_MonteCarlo(loops, Num_samples):
    range_it = xrange(loops)
    t0 = pyperf.perf_counter()

    for _ in range_it:
        MonteCarlo(Num_samples)

    return pyperf.perf_counter() - t0


def LU_factor(A, pivot):
    M, N = A.height, A.width
    minMN = min(M, N)
    for j in xrange(minMN):
        jp = j
        t = abs(A[j][j])
        for i in xrange(j + 1, M):
            ab = abs(A[i][j])
            if ab > t:
                jp = i
                t = ab
        pivot[j] = jp

        if A[jp][j] == 0:
            raise Exception("factorization failed because of zero pivot")

        if jp != j:
            A[j], A[jp] = A[jp], A[j]

        if j < M - 1:
            recp = 1.0 / A[j][j]
            for k in xrange(j + 1, M):
                A[k][j] *= recp

        if j < minMN - 1:
            for ii in xrange(j + 1, M):
                for jj in xrange(j + 1, N):
                    A[ii][jj] -= A[ii][j] * A[j][jj]


def LU(lu, A, pivot):
    lu.copy_data_from(A)
    LU_factor(lu, pivot)


def bench_LU(cycles, N):
    rnd = Random(7)
    A = rnd.RandomMatrix(ArrayList(N, N))
    lu = ArrayList(N, N)
    pivot = array('i', [0]) * N
    range_it = xrange(cycles)
    t0 = pyperf.perf_counter()

    for _ in range_it:
        LU(lu, A, pivot)

    return pyperf.perf_counter() - t0


def int_log2(n):
    k = 1
    log = 0
    while k < n:
        k *= 2
        log += 1
    if n != 1 << log:
        raise Exception("FFT: Data length is not a power of 2: %s" % n)
    return log


def FFT_num_flops(N):
    return (5.0 * N - 2) * int_log2(N) + 2 * (N + 1)


def FFT_transform_internal(N, data, direction):
    n = N // 2
    bit = 0
    dual = 1
    if n == 1:
        return

    logn = int_log2(n)
    if N == 0:
        return
    FFT_bitreverse(N, data)

    # apply fft recursion
    # this loop executed int_log2(N) times
    bit = 0
    while bit < logn:
        w_real = 1.0
        w_imag = 0.0
        theta = 2.0 * direction * math.pi / (2.0 * float(dual))
        s = math.sin(theta)
        t = math.sin(theta / 2.0)
        s2 = 2.0 * t * t
        for b in range(0, n, 2 * dual):
            i = 2 * b
            j = 2 * (b + dual)
            wd_real = data[j]
            wd_imag = data[j + 1]
            data[j] = data[i] - wd_real
            data[j + 1] = data[i + 1] - wd_imag
            data[i] += wd_real
            data[i + 1] += wd_imag
        for a in xrange(1, dual):
            tmp_real = w_real - s * w_imag - s2 * w_real
            tmp_imag = w_imag + s * w_real - s2 * w_imag
            w_real = tmp_real
            w_imag = tmp_imag
            for b in range(0, n, 2 * dual):
                i = 2 * (b + a)
                j = 2 * (b + a + dual)
                z1_real = data[j]
                z1_imag = data[j + 1]
                wd_real = w_real * z1_real - w_imag * z1_imag
                wd_imag = w_real * z1_imag + w_imag * z1_real
                data[j] = data[i] - wd_real
                data[j + 1] = data[i + 1] - wd_imag
                data[i] += wd_real
                data[i + 1] += wd_imag
        bit += 1
        dual *= 2


def FFT_bitreverse(N, data):
    n = N // 2
    nm1 = n - 1
    j = 0
    for i in range(nm1):
        ii = i << 1
        jj = j << 1
        k = n >> 1
        if i < j:
            tmp_real = data[ii]
            tmp_imag = data[ii + 1]
            data[ii] = data[jj]
            data[ii + 1] = data[jj + 1]
            data[jj] = tmp_real
            data[jj + 1] = tmp_imag
        while k <= j:
            j -= k
            k >>= 1
        j += k


def FFT_transform(N, data):
    FFT_transform_internal(N, data, -1)


def FFT_inverse(N, data):
    n = N / 2
    norm = 0.0
    FFT_transform_internal(N, data, +1)
    norm = 1 / float(n)
    for i in xrange(N):
        data[i] *= norm


def bench_FFT(loops, N, cycles):
    twoN = 2 * N
    init_vec = Random(7).RandomVector(twoN)
    range_it = xrange(loops)
    t0 = pyperf.perf_counter()

    for _ in range_it:
        x = copy_vector(init_vec)
        for i in xrange(cycles):
            FFT_transform(twoN, x)
            FFT_inverse(twoN, x)

    return pyperf.perf_counter() - t0


def add_cmdline_args(cmd, args):
    if args.benchmark:
        cmd.append(args.benchmark)


BENCHMARKS = {
    # function name => arguments
    'sor': (bench_SOR, 100, 10, Array2D),
    'sparse_mat_mult': (bench_SparseMatMult, 1000, 50 * 1000),
    'monte_carlo': (bench_MonteCarlo, 100 * 1000,),
    'lu': (bench_LU, 100,),
    'fft': (bench_FFT, 1024, 50),
}


if __name__ == "__main__":
    runner = pyperf.Runner(add_cmdline_args=add_cmdline_args)
    runner.argparser.add_argument("benchmark", nargs='?',
                                  choices=sorted(BENCHMARKS))

    args = runner.parse_args()
    if args.benchmark:
        benchmarks = (args.benchmark,)
    else:
        benchmarks = sorted(BENCHMARKS)

    for bench in benchmarks:
        name = 'scimark_%s' % bench
        print(name)
        args = BENCHMARKS[bench]
        (args[0])(10, *args[1:])
#        runner.bench_time_func(name, *args)