File: torchtest.py

package info (click to toggle)
scalene 1.5.51-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,528 kB
  • sloc: cpp: 22,930; python: 13,403; javascript: 11,769; ansic: 817; makefile: 196; sh: 45
file content (64 lines) | stat: -rwxr-xr-x 2,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import math

def torchtest():
    dtype = torch.float
    #device = torch.device("cpu")
    # device = torch.device("cuda:0")  # Uncomment this to run on GPU
    # device = torch.device("cuda")  # Uncomment this to run on GPU
    device = torch.device("mps")

    # Create Tensors to hold input and outputs.
    # By default, requires_grad=False, which indicates that we do not need to
    # compute gradients with respect to these Tensors during the backward pass.
    # x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
    q = torch.linspace(-math.pi, math.pi, 5000000, device=device, dtype=dtype)
    x = torch.linspace(-math.pi, math.pi, 5000000, device=device, dtype=dtype)
    y = torch.sin(x)

    # Create random Tensors for weights. For a third order polynomial, we need
    # 4 weights: y = a + b x + c x^2 + d x^3
    # Setting requires_grad=True indicates that we want to compute gradients with
    # respect to these Tensors during the backward pass.
    a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
    b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
    c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
    d = torch.randn((), device=device, dtype=dtype, requires_grad=True)

    learning_rate = 1e-6
    for t in range(2000):
        # Forward pass: compute predicted y using operations on Tensors.
        y_pred = a + b * x + c * x ** 2 + d * x ** 3

        # Compute and print loss using operations on Tensors.
        # Now loss is a Tensor of shape (1,)
        # loss.item() gets the scalar value held in the loss.
        #     loss = (y_pred - y).pow(2).sum()
        loss = (y_pred - y).sum()
        if t % 100 == 99:
            print(t, loss.item())

        # Use autograd to compute the backward pass. This call will compute the
        # gradient of loss with respect to all Tensors with requires_grad=True.
        # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
        # the gradient of the loss with respect to a, b, c, d respectively.
        loss.backward()

        # Manually update weights using gradient descent. Wrap in torch.no_grad()
        # because weights have requires_grad=True, but we don't need to track this
        # in autograd.
        with torch.no_grad():
            a -= learning_rate * a.grad
            b -= learning_rate * b.grad
            c -= learning_rate * c.grad
            d -= learning_rate * d.grad

            # Manually zero the gradients after updating weights
            a.grad = None
            b.grad = None
            c.grad = None
            d.grad = None

    print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

torchtest()